Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 147
Filtrar
1.
Am J Hum Genet ; 2024 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-39013459

RESUMEN

Trithorax-related H3K4 methyltransferases, KMT2C and KMT2D, are critical epigenetic modifiers. Haploinsufficiency of KMT2C was only recently recognized as a cause of neurodevelopmental disorder (NDD), so the clinical and molecular spectrums of the KMT2C-related NDD (now designated as Kleefstra syndrome 2) are largely unknown. We ascertained 98 individuals with rare KMT2C variants, including 75 with protein-truncating variants (PTVs). Notably, ∼15% of KMT2C PTVs were inherited. Although the most highly expressed KMT2C transcript consists of only the last four exons, pathogenic PTVs were found in almost all the exons of this large gene. KMT2C variant interpretation can be challenging due to segmental duplications and clonal hematopoesis-induced artifacts. Using samples from 27 affected individuals, divided into discovery and validation cohorts, we generated a moderate strength disorder-specific KMT2C DNA methylation (DNAm) signature and demonstrate its utility in classifying non-truncating variants. Based on 81 individuals with pathogenic/likely pathogenic variants, we demonstrate that the KMT2C-related NDD is characterized by developmental delay, intellectual disability, behavioral and psychiatric problems, hypotonia, seizures, short stature, and other comorbidities. The facial module of PhenoScore, applied to photographs of 34 affected individuals, reveals that the KMT2C-related facial gestalt is significantly different from the general NDD population. Finally, using PhenoScore and DNAm signatures, we demonstrate that the KMT2C-related NDD is clinically and epigenetically distinct from Kleefstra and Kabuki syndromes. Overall, we define the clinical features, molecular spectrum, and DNAm signature of the KMT2C-related NDD and demonstrate they are distinct from Kleefstra and Kabuki syndromes highlighting the need to rename this condition.

2.
Front Psychol ; 15: 1305597, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38939222

RESUMEN

Introduction: Metformin has been used as a targeted treatment to potentially improve cognition and slow the typical IQ decline that occurs during development among individuals with fragile X syndrome (FXS). In this follow-up study, we are following the trajectory of IQ and adaptive behavior changes over 1 to 3 years in individuals with FXS who are clinically treated with metformin in an open label trial. Method: Individuals with FXS ages 6 to 25 years (mean 13.15 ± 5.50) and nonverbal IQ mean 57.69 (±15.46) were treated for 1-3 years (1.88 ± 0.63). They all had a baseline IQ test using the Leiter-III non-verbal cognitive assessment and the Vineland-III adaptive behavior assessment before the start of metformin. Repeat Leiter-III and Vineland-III were completed after at least 1 year of metformin (500-1,000 mg/dose given twice a day). Result: There were no significant changes in non-verbal IQ or in the adaptive behavior measurements at FDR < 0.05. The findings thus far indicate that both IQ and adaptive behavior are stable over time, and we did not see a significant decline in either measure. Conclusion: Overall, the small sample size and short follow-up duration limit the interpretation of the effects of metformin on cognitive development and adaptive functioning. There is individual variability but overall for the group there was no significant decline in IQ or adaptive behavior.

3.
medRxiv ; 2024 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-38826357

RESUMEN

Our genetic makeup, together with environmental and social influences, shape our brain's development. Yet, the imaging genetics field has struggled to integrate all these modalities to investigate the interplay between genetic blueprint, environment, human health, daily living skills and outcomes. Hence, we interrogated the Adolescent Brain Cognitive Development (ABCD) cohort to outline the effects of rare high-effect genetic variants on brain architecture and corresponding implications on cognitive, behavioral, psychosocial, and socioeconomic traits. Specifically, we designed a holistic pattern-learning algorithm that quantitatively dissects the impacts of copy number variations (CNVs) on brain structure and 962 behavioral variables spanning 20 categories in 7,657 adolescents. Our results reveal associations between genetic alterations, higher-order brain networks, and specific parameters of the family well-being (increased parental and child stress, anxiety and depression) or neighborhood dynamics (decreased safety); effects extending beyond the impairment of cognitive ability or language capacity, dominantly reported in the CNV literature. Our investigation thus spotlights a far-reaching interplay between genetic variation and subjective life quality in adolescents and their families.

4.
Front Psychiatry ; 15: 1369767, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38751416

RESUMEN

Introduction: Rare copy number variants (CNVs) and polygenic risk for intelligence (PRS-IQ) both confer susceptibility for autism spectrum disorder (ASD) but have opposing effects on cognitive ability. The field has struggled to disentangle the effects of these two classes of genomic variants on cognitive ability from their effects on ASD susceptibility, in part because previous studies did not include controls with cognitive measures. We aim to investigate the impact of these genomic variants on ASD risk while adjusting for their known effects on cognitive ability. Methods: In a cohort of 8,426 subjects with ASD and 169,804 controls with cognitive assessments, we found that rare coding CNVs and PRS-IQ increased ASD risk, even after adjusting for their effects on cognitive ability. Results: Bottom decile PRS-IQ and CNVs both decreased cognitive ability but had opposing effects on ASD risk. Models combining both classes of variants showed that the effects of rare CNVs and PRS-IQ on ASD risk and cognitive ability were largely additive, further suggesting that susceptibility for ASD is conferred independently from its effects on cognitive ability. Despite imparting mostly additive effects on ASD risk, rare CNVs and PRS-IQ showed opposing effects on core and associated features and developmental history among subjects with ASD. Discussion: Our findings suggest that cognitive ability itself may not be the factor driving the underlying liability for ASD conferred by these two classes of genomic variants. In other words, ASD risk and cognitive ability may be two distinct manifestations of CNVs and PRS-IQ. This study also highlights the challenge of understanding how genetic risk for ASD maps onto its dimensional traits.

5.
Mol Autism ; 15(1): 15, 2024 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-38570867

RESUMEN

BACKGROUND: Clinicians diagnosing autism rely on diagnostic criteria and instruments in combination with an implicit knowledge based on clinical expertise of the specific signs and presentations associated with the condition. This implicit knowledge influences how diagnostic criteria are interpreted, but it cannot be directly observed. Instead, insight into clinicians' understanding of autism can be gained by investigating their diagnostic certainty. Modest correlations between the certainty of an autism diagnosis and symptom load have been previously reported. Here, we investigated the associations of diagnostic certainty with specific items of the ADOS as well as other clinical features including head circumference. METHODS: Phenotypic data from the Simons Simplex Collection was used to investigate clinical correlates of diagnostic certainty in individuals diagnosed with Autistic Disorder (n = 1511, age 4 to 18 years). Participants were stratified by the ADOS module used to evaluate them. We investigated how diagnostic certainty was associated with total ADOS scores, age, and ADOS module. We calculated the odds-ratios of being diagnosed with the highest possible certainty given the presence or absence of different signs during the ADOS evaluation. Associations between diagnostic certainty and other cognitive and clinical variables were also assessed. RESULTS: In each ADOS module, some items showed a larger association with diagnostic certainty than others. Head circumference was significantly higher for individuals with the highest certainty rating across all three ADOS modules. In turn, head circumference was positively correlated with some of the ADOS items that were associated with diagnostic certainty, and was negatively correlated with verbal/nonverbal IQ ratio among those assessed with ADOS module 2. LIMITATIONS: The investigated cohort was heterogeneous, e.g. in terms of age, IQ, language level, and total ADOS score, which could impede the identification of associations that only exist in a subgroup of the population. The variability of the certainty ratings in the sample was low, limiting the power to identify potential associations with other variables. Additionally, the scoring of diagnostic certainty may vary between clinicians. CONCLUSION: Some ADOS items may better capture the signs that are most associated with clinicians' implicit knowledge of Autistic Disorder. If replicated in future studies, new diagnostic instruments with differentiated weighting of signs may be needed to better reflect this, possibly resulting in better specificity in standardized assessments.


Asunto(s)
Trastorno del Espectro Autista , Trastorno Autístico , Niño , Humanos , Adolescente , Preescolar , Trastorno Autístico/diagnóstico , Lenguaje , Trastorno del Espectro Autista/diagnóstico
7.
J Autism Dev Disord ; 2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38653851

RESUMEN

The purpose of this paper was to examine the physical, emotional, social and school functioning domains of quality of life of individuals with Fragile X Syndrome, in relation to mental health and sleep patterns to gain a better understanding of how these aspects are affected by the disorder. This study included 119 individuals with Fragile X Syndrome who were given different cognitive examinations by a neuropsychologist or by parent-proxy questionnaires. This study focused on the Pediatric Quality of Life Inventory (PedsQoL), the Anxiety, Depression and Mood Scale (ADAMS), the Children's Sleep Habits Questionnaire (CSHQ), but did include other cognitive tests (Vineland Adaptive Behaviour Scales, Nonverbal IQ, Autism Diagnostic Observation Schedule). We identified significant associations between decreases in emotional, social and school domains of PedsQoL and the ADAMS subtests of Generalized Anxiety, Manic/Hyperactivity and Obsessive/Compulsivity, with the subtest of Depressed Mood having associations with lower physical and emotional domains. We also identified a significant impact between CSHQ subtests of Sleep Anxiety, Night Wakings, Daytime Sleepiness, and Parasomnia with the emotional and school domains of PedsQoL. There were associations connecting school functioning with Bedtime Resistance, and additional associations connecting emotional functioning with Sleep Duration and Sleep Onset Delay. Physical functioning was also associated with Sleep Anxiety. Our study shows how mental health and sleep defects impact improper sleep patterns and mental health which leads to decreases in the quality of life for individuals with FXS, and how it is important to screen for these symptoms in order to alleviate issues.

8.
Transl Psychiatry ; 14(1): 171, 2024 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-38555309

RESUMEN

There is widespread overlap across major psychiatric disorders, and this is the case at different levels of observations, from genetic variants to brain structures and function and to symptoms. However, it remains unknown to what extent these commonalities at different levels of observation map onto each other. Here, we systematically review and compare the degree of similarity between psychiatric disorders at all available levels of observation. We searched PubMed and EMBASE between January 1, 2009 and September 8, 2022. We included original studies comparing at least four of the following five diagnostic groups: Schizophrenia, Bipolar Disorder, Major Depressive Disorder, Autism Spectrum Disorder, and Attention Deficit Hyperactivity Disorder, with measures of similarities between all disorder pairs. Data extraction and synthesis were performed by two independent researchers, following the PRISMA guidelines. As main outcome measure, we assessed the Pearson correlation measuring the degree of similarity across disorders pairs between studies and biological levels of observation. We identified 2975 studies, of which 28 were eligible for analysis, featuring similarity measures based on single-nucleotide polymorphisms, gene-based analyses, gene expression, structural and functional connectivity neuroimaging measures. The majority of correlations (88.6%) across disorders between studies, within and between levels of observation, were positive. To identify a consensus ranking of similarities between disorders, we performed a principal component analysis. Its first dimension explained 51.4% (95% CI: 43.2, 65.4) of the variance in disorder similarities across studies and levels of observation. Based on levels of genetic correlation, we estimated the probability of another psychiatric diagnosis in first-degree relatives and showed that they were systematically lower than those observed in population studies. Our findings highlight that genetic and brain factors may underlie a large proportion, but not all of the diagnostic overlaps observed in the clinic.


Asunto(s)
Trastorno por Déficit de Atención con Hiperactividad , Trastorno del Espectro Autista , Trastorno Bipolar , Trastorno Depresivo Mayor , Trastornos Mentales , Esquizofrenia , Humanos , Trastorno Depresivo Mayor/genética , Trastorno del Espectro Autista/genética , Trastornos Mentales/genética , Trastornos Mentales/psicología , Trastorno Bipolar/genética , Trastorno Bipolar/epidemiología , Esquizofrenia/genética , Esquizofrenia/epidemiología , Trastorno por Déficit de Atención con Hiperactividad/genética , Trastorno por Déficit de Atención con Hiperactividad/epidemiología
9.
Nat Commun ; 15(1): 2639, 2024 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-38531844

RESUMEN

Asymmetry between the left and right hemisphere is a key feature of brain organization. Hemispheric functional specialization underlies some of the most advanced human-defining cognitive operations, such as articulated language, perspective taking, or rapid detection of facial cues. Yet, genetic investigations into brain asymmetry have mostly relied on common variants, which typically exert small effects on brain-related phenotypes. Here, we leverage rare genomic deletions and duplications to study how genetic alterations reverberate in human brain and behavior. We designed a pattern-learning approach to dissect the impact of eight high-effect-size copy number variations (CNVs) on brain asymmetry in a multi-site cohort of 552 CNV carriers and 290 non-carriers. Isolated multivariate brain asymmetry patterns spotlighted regions typically thought to subserve lateralized functions, including language, hearing, as well as visual, face and word recognition. Planum temporale asymmetry emerged as especially susceptible to deletions and duplications of specific gene sets. Targeted analysis of common variants through genome-wide association study (GWAS) consolidated partly diverging genetic influences on the right versus left planum temporale structure. In conclusion, our gene-brain-behavior data fusion highlights the consequences of genetically controlled brain lateralization on uniquely human cognitive capacities.


Asunto(s)
Variaciones en el Número de Copia de ADN , Estudio de Asociación del Genoma Completo , Humanos , Lateralidad Funcional , Mapeo Encefálico , Encéfalo , Imagen por Resonancia Magnética
10.
Cell Stem Cell ; 31(3): 421-432.e8, 2024 03 07.
Artículo en Inglés | MEDLINE | ID: mdl-38382530

RESUMEN

Thalamic dysfunction has been implicated in multiple psychiatric disorders. We sought to study the mechanisms by which abnormalities emerge in the context of the 22q11.2 microdeletion, which confers significant genetic risk for psychiatric disorders. We investigated early stages of human thalamus development using human pluripotent stem cell-derived organoids and show that the 22q11.2 microdeletion underlies widespread transcriptional dysregulation associated with psychiatric disorders in thalamic neurons and glia, including elevated expression of FOXP2. Using an organoid co-culture model, we demonstrate that the 22q11.2 microdeletion mediates an overgrowth of thalamic axons in a FOXP2-dependent manner. Finally, we identify ROBO2 as a candidate molecular mediator of the effects of FOXP2 overexpression on thalamic axon overgrowth. Together, our study suggests that early steps in thalamic development are dysregulated in a model of genetic risk for schizophrenia and contribute to neural phenotypes in 22q11.2 deletion syndrome.


Asunto(s)
Síndrome de DiGeorge , Esquizofrenia , Humanos , Esquizofrenia/genética , Síndrome de DiGeorge/genética , Síndrome de DiGeorge/psicología , Fenotipo
11.
Transl Psychiatry ; 14(1): 95, 2024 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-38355713

RESUMEN

Reciprocal Copy Number Variants (CNVs) at the 16p11.2 locus confer high risk for autism spectrum disorder (ASD) and other neurodevelopmental disorders (NDDs). Morphometric MRI studies have revealed large and pervasive volumetric alterations in carriers of a 16p11.2 deletion. However, the specific neuroanatomical mechanisms underlying such alterations, as well as their developmental trajectory, are still poorly understood. Here we explored differences in microstructural brain connectivity between 24 children carrying a 16p11.2 deletion and 66 typically developing (TD) children between 2 and 8 years of age. We found a large pervasive increase of intra-axonal volume widespread over a high number of white matter tracts. Such microstructural alterations in 16p11.2 deletion children were already present at an early age, and led to significant changes in the global efficiency and integration of brain networks mainly associated to language, motricity and socio-emotional behavior, although the widespread pattern made it unlikely to represent direct functional correlates. Our results shed light on the neuroanatomical basis of the previously reported increase of white matter volume, and align well with analogous evidence of altered axonal diameter and synaptic function in 16p11.2 mice models. We provide evidence of a prevalent mechanistic deviation from typical maturation of brain structural connectivity associated with a specific biological risk to develop ASD. Future work is warranted to determine how this deviation contributes to the emergence of symptoms observed in young children diagnosed with ASD and other NDDs.


Asunto(s)
Trastorno del Espectro Autista , Sustancia Blanca , Niño , Humanos , Animales , Ratones , Preescolar , Deleción Cromosómica , Trastorno del Espectro Autista/diagnóstico por imagen , Trastorno del Espectro Autista/genética , Encéfalo/diagnóstico por imagen , Sustancia Blanca/diagnóstico por imagen , Imagen por Resonancia Magnética , Cromosomas Humanos Par 16/genética , Variaciones en el Número de Copia de ADN
12.
J Med Genet ; 61(2): 132-141, 2024 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-37580113

RESUMEN

BACKGROUND: Pathogenic variants in the zinc finger protein coding genes are rare causes of intellectual disability and congenital malformations. Mutations in the ZNF148 gene causing GDACCF syndrome (global developmental delay, absent or hypoplastic corpus callosum, dysmorphic facies; MIM #617260) have been reported in five individuals so far. METHODS: As a result of an international collaboration using GeneMatcher Phenome Central Repository and personal communications, here we describe the clinical and molecular genetic characteristics of 22 previously unreported individuals. RESULTS: The core clinical phenotype is characterised by developmental delay particularly in the domain of speech development, postnatal growth retardation, microcephaly and facial dysmorphism. Corpus callosum abnormalities appear less frequently than suggested by previous observations. The identified mutations concerned nonsense or frameshift variants that were mainly located in the last exon of the ZNF148 gene. Heterozygous deletion including the entire ZNF148 gene was found in only one case. Most mutations occurred de novo, but were inherited from an affected parent in two families. CONCLUSION: The GDACCF syndrome is clinically diverse, and a genotype-first approach, that is, exome sequencing is recommended for establishing a genetic diagnosis rather than a phenotype-first approach. However, the syndrome may be suspected based on some recurrent, recognisable features. Corpus callosum anomalies were not as constant as previously suggested, we therefore recommend to replace the term 'GDACCF syndrome' with 'ZNF148-related neurodevelopmental disorder'.


Asunto(s)
Discapacidad Intelectual , Leucoencefalopatías , Humanos , Niño , Cuerpo Calloso , Facies , Mutación/genética , Fenotipo , Genotipo , Discapacidad Intelectual/genética , Discapacidad Intelectual/diagnóstico , Síndrome , Discapacidades del Desarrollo/patología , Proteínas de Unión al ADN/genética , Factores de Transcripción/genética
13.
medRxiv ; 2023 Nov 29.
Artículo en Inglés | MEDLINE | ID: mdl-38076919

RESUMEN

Rare copy number variants (CNVs) and polygenic risk for intelligence (PRS-IQ) both confer risk for autism spectrum disorder (ASD) but have opposing effects on cognitive ability. The field has struggled to disentangle the effects of these two classes of genomic variants on cognitive ability from their effects on ASD risk, in part because previous studies did not include controls with cognitive measures. We aim to investigate the impact of these genomic variants on ASD risk while adjusting for their known effects on cognitive ability. In a cohort of 8,426 subjects with ASD and 169,804 controls with cognitive assessments, we found that rare coding CNVs and PRS-IQ increased ASD risk, even after adjusting for their effects on cognitive ability. Bottom decile PRS-IQ and CNVs both decreased cognitive ability but had opposing effects on ASD risk. Models combining both classes of variants showed that the effects of rare CNVs and PRS-IQ on ASD risk and cognitive ability were largely additive, further suggesting that risk for ASD is conferred independently from its effects on cognitive ability. Despite imparting mostly additive effects on ASD risk, rare CNVs and PRS-IQ showed opposing effects on core and associated features and developmental history among subjects with ASD. Our findings suggest that cognitive ability itself may not be the factor driving the underlying risk for ASD conferred by these two classes of genomic variants. In other words, ASD risk and cognitive ability may be two distinct manifestations of CNVs and PRS-IQ. This study also highlights the challenge of understanding how genetic risk for ASD maps onto its dimensional traits.

14.
Cells ; 12(14)2023 07 24.
Artículo en Inglés | MEDLINE | ID: mdl-37508583

RESUMEN

This study contributes to a greater understanding of the utility of molecular biomarkers to identify clinical phenotypes of fragile X syndrome (FXS). Correlations of baseline clinical trial data (molecular measures-FMR1 mRNA, CYFIP1 mRNA, MMP9 and FMRP protein expression levels, nonverbal IQ, body mass index and weight, language level, NIH Toolbox, adaptive behavior rating, autism, and other mental health correlates) of 59 participants with FXS ages of 6-32 years are reported. FMR1 mRNA expression levels correlated positively with adaptive functioning levels, expressive language, and specific NIH Toolbox measures. The findings of a positive correlation of MMP-9 levels with obesity, CYFIP1 mRNA with mood and autistic symptoms, and FMR1 mRNA expression level with better cognitive, language, and adaptive functions indicate potential biomarkers for specific FXS phenotypes. These may be potential markers for future clinical trials for targeted treatments of FXS.


Asunto(s)
Síndrome del Cromosoma X Frágil , Humanos , Síndrome del Cromosoma X Frágil/diagnóstico , Síndrome del Cromosoma X Frágil/genética , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/genética , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/metabolismo , Fenotipo , Biomarcadores , ARN Mensajero/metabolismo
15.
Am J Psychiatry ; 180(9): 685-698, 2023 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-37434504

RESUMEN

OBJECTIVE: Copy number variants (CNVs) are well-known genetic pleiotropic risk factors for multiple neurodevelopmental and psychiatric disorders (NPDs), including autism (ASD) and schizophrenia. Little is known about how different CNVs conferring risk for the same condition may affect subcortical brain structures and how these alterations relate to the level of disease risk conferred by CNVs. To fill this gap, the authors investigated gross volume, vertex-level thickness, and surface maps of subcortical structures in 11 CNVs and six NPDs. METHODS: Subcortical structures were characterized using harmonized ENIGMA protocols in 675 CNV carriers (CNVs at 1q21.1, TAR, 13q12.12, 15q11.2, 16p11.2, 16p13.11, and 22q11.2; age range, 6-80 years; 340 males) and 782 control subjects (age range, 6-80 years; 387 males) as well as ENIGMA summary statistics for ASD, schizophrenia, attention deficit hyperactivity disorder, obsessive-compulsive disorder, bipolar disorder, and major depression. RESULTS: All CNVs showed alterations in at least one subcortical measure. Each structure was affected by at least two CNVs, and the hippocampus and amygdala were affected by five. Shape analyses detected subregional alterations that were averaged out in volume analyses. A common latent dimension was identified, characterized by opposing effects on the hippocampus/amygdala and putamen/pallidum, across CNVs and across NPDs. Effect sizes of CNVs on subcortical volume, thickness, and local surface area were correlated with their previously reported effect sizes on cognition and risk for ASD and schizophrenia. CONCLUSIONS: The findings demonstrate that subcortical alterations associated with CNVs show varying levels of similarities with those associated with neuropsychiatric conditions, as well distinct effects, with some CNVs clustering with adult-onset conditions and others with ASD. These findings provide insight into the long-standing questions of why CNVs at different genomic loci increase the risk for the same NPD and why a single CNV increases the risk for a diverse set of NPDs.


Asunto(s)
Trastorno por Déficit de Atención con Hiperactividad , Esquizofrenia , Masculino , Adulto , Humanos , Niño , Adolescente , Adulto Joven , Persona de Mediana Edad , Anciano , Anciano de 80 o más Años , Variaciones en el Número de Copia de ADN/genética , Esquizofrenia/genética , Encéfalo/diagnóstico por imagen , Trastorno por Déficit de Atención con Hiperactividad/genética , Genómica
16.
Nat Neurosci ; 26(7): 1208-1217, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37365313

RESUMEN

Autism spectrum disorder (ASD) is a neurodevelopmental disorder characterized by heterogeneous cognitive, behavioral and communication impairments. Disruption of the gut-brain axis (GBA) has been implicated in ASD although with limited reproducibility across studies. In this study, we developed a Bayesian differential ranking algorithm to identify ASD-associated molecular and taxa profiles across 10 cross-sectional microbiome datasets and 15 other datasets, including dietary patterns, metabolomics, cytokine profiles and human brain gene expression profiles. We found a functional architecture along the GBA that correlates with heterogeneity of ASD phenotypes, and it is characterized by ASD-associated amino acid, carbohydrate and lipid profiles predominantly encoded by microbial species in the genera Prevotella, Bifidobacterium, Desulfovibrio and Bacteroides and correlates with brain gene expression changes, restrictive dietary patterns and pro-inflammatory cytokine profiles. The functional architecture revealed in age-matched and sex-matched cohorts is not present in sibling-matched cohorts. We also show a strong association between temporal changes in microbiome composition and ASD phenotypes. In summary, we propose a framework to leverage multi-omic datasets from well-defined cohorts and investigate how the GBA influences ASD.


Asunto(s)
Trastorno del Espectro Autista , Microbioma Gastrointestinal , Humanos , Microbioma Gastrointestinal/genética , Eje Cerebro-Intestino , Trastorno del Espectro Autista/genética , Trastorno del Espectro Autista/metabolismo , Estudios Transversales , Teorema de Bayes , Reproducibilidad de los Resultados , Citocinas
17.
Nat Med ; 29(7): 1671-1680, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37365347

RESUMEN

While over 100 genes have been associated with autism, little is known about the prevalence of variants affecting them in individuals without a diagnosis of autism. Nor do we fully appreciate the phenotypic diversity beyond the formal autism diagnosis. Based on data from more than 13,000 individuals with autism and 210,000 undiagnosed individuals, we estimated the odds ratios for autism associated to rare loss-of-function (LoF) variants in 185 genes associated with autism, alongside 2,492 genes displaying intolerance to LoF variants. In contrast to autism-centric approaches, we investigated the correlates of these variants in individuals without a diagnosis of autism. We show that these variants are associated with a small but significant decrease in fluid intelligence, qualification level and income and an increase in metrics related to material deprivation. These effects were larger for autism-associated genes than in other LoF-intolerant genes. Using brain imaging data from 21,040 individuals from the UK Biobank, we could not detect significant differences in the overall brain anatomy between LoF carriers and non-carriers. Our results highlight the importance of studying the effect of the genetic variants beyond categorical diagnosis and the need for more research to understand the association between these variants and sociodemographic factors, to best support individuals carrying these variants.


Asunto(s)
Trastorno del Espectro Autista , Trastorno Autístico , Humanos , Trastorno Autístico/genética , Fenotipo , Heterocigoto , Encéfalo
18.
Hum Mol Genet ; 32(22): 3123-3134, 2023 11 03.
Artículo en Inglés | MEDLINE | ID: mdl-37166351

RESUMEN

Germline pathogenic variants in two genes encoding the lysine-specific histone methyltransferase genes SETD1A and SETD2 are associated with neurodevelopmental disorders (NDDs) characterized by developmental delay and congenital anomalies. The SETD1A and SETD2 gene products play a critical role in chromatin-mediated regulation of gene expression. Specific methylation episignatures have been detected for a range of chromatin gene-related NDDs and have impacted clinical practice by improving the interpretation of variant pathogenicity. To investigate if SETD1A and/or SETD2-related NDDs are associated with a detectable episignature, we undertook targeted genome-wide methylation profiling of > 2 M CpGs using a next-generation sequencing-based assay. A comparison of methylation profiles in patients with SETD1A variants (n = 6) did not reveal evidence of a strong methylation episignature. A review of the clinical and genetic features of the SETD2 patient group revealed that, as reported previously, there were phenotypic differences between patients with truncating mutations (n = 4, Luscan-Lumish syndrome; MIM:616831) and those with missense codon 1740 variants [p.Arg1740Trp (n = 4) and p.Arg1740Gln (n = 2)]. Both SETD2 subgroups demonstrated a methylation episignature, which was characterized by hypomethylation and hypermethylation events, respectively. Within the codon 1740 subgroup, both the methylation changes and clinical phenotype were more severe in those with p.Arg1740Trp variants. We also noted that two of 10 cases with a SETD2-NDD had developed a neoplasm. These findings reveal novel epigenotype-genotype-phenotype correlations in SETD2-NDDs and predict a gain-of-function mechanism for SETD2 codon 1740 pathogenic variants.


Asunto(s)
Cromatina , Trastornos del Neurodesarrollo , Humanos , Cromatina/genética , Metilación de ADN/genética , Mutación , Trastornos del Neurodesarrollo/genética , Estudios de Asociación Genética , Codón
19.
bioRxiv ; 2023 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-37131672

RESUMEN

Asymmetry between the left and right brain is a key feature of brain organization. Hemispheric functional specialization underlies some of the most advanced human-defining cognitive operations, such as articulated language, perspective taking, or rapid detection of facial cues. Yet, genetic investigations into brain asymmetry have mostly relied on common variant studies, which typically exert small effects on brain phenotypes. Here, we leverage rare genomic deletions and duplications to study how genetic alterations reverberate in human brain and behavior. We quantitatively dissected the impact of eight high-effect-size copy number variations (CNVs) on brain asymmetry in a multi-site cohort of 552 CNV carriers and 290 non-carriers. Isolated multivariate brain asymmetry patterns spotlighted regions typically thought to subserve lateralized functions, including language, hearing, as well as visual, face and word recognition. Planum temporale asymmetry emerged as especially susceptible to deletions and duplications of specific gene sets. Targeted analysis of common variants through genome-wide association study (GWAS) consolidated partly diverging genetic influences on the right versus left planum temporale structure. In conclusion, our gene-brain-behavior mapping highlights the consequences of genetically controlled brain lateralization on human-defining cognitive traits.

20.
Neurosci Biobehav Rev ; 150: 105201, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37116771

RESUMEN

Diagnostic criteria used in autism research have undergone a shift towards the inclusion of a larger population, paralleled by increasing, but variable, estimates of autism prevalence across clinical settings and continents. A categorical diagnosis of autism spectrum disorder is now consistent with large variations in language, intelligence, comorbidity, and severity, leading to a heterogeneous sample of individuals, increasingly distant from the initial prototypical descriptions. We review the history of autism diagnosis and subtyping, and the evidence of heterogeneity in autism at the cognitive, neurological, and genetic levels. We describe two strategies to address the problem of heterogeneity: clustering, and truncated-compartmentalized enrollment strategy based on prototype recognition. The advances made using clustering methods have been modest. We present an alternative, new strategy for dissecting autism heterogeneity, emphasizing incorporation of prototypical samples in research cohorts, comparison of subgroups defined by specific ranges of values for the clinical specifiers, and retesting the generality of neurobiological results considered to be acquired from the entire autism spectrum on prototypical cohorts defined by narrow specifiers values.


Asunto(s)
Trastorno del Espectro Autista , Trastorno Autístico , Humanos , Trastorno Autístico/genética , Trastorno del Espectro Autista/genética , Trastorno del Espectro Autista/epidemiología , Neuroimagen/métodos , Comorbilidad , Reconocimiento en Psicología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...