Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Environ Microbiol ; 25(12): 3225-3238, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37740256

RESUMEN

Multispecies biofilms are important models for studying the evolution of microbial interactions. Co-cultivation of Xanthomonas retroflexus (XR) and Paenibacillus amylolyticus (PA) systemically leads to the appearance of an XR wrinkled mutant (XRW), increasing biofilm production. The nature of this new interaction and the role of each partner remain unclear. We tested the involvement of secreted molecular cues in this interaction by exposing XR and XRW to PA or its supernatant and analysing the response using RNA-seq, colony-forming unit (CFU) estimates, biofilm quantification, and microscopy. Compared to wild type, the mutations in XRW altered its gene expression and increased its CFU number. These changes matched the reported effects for one of the mutated genes: a response regulator part of a two-component system involved in environmental sensing. When XRW was co-cultured with PA or its supernatant, the mutations effects on XRW gene expression were masked, except for genes involved in sedentary lifestyle, being consistent with the higher biofilm production. It appears that the higher biofilm production was the result of the interaction between the genetic context (mutations) and the biotic environment (PA signals). Regulatory genes involved in environmental sensing need to be considered to shed further light on microbial interactions.


Asunto(s)
Interacciones Microbianas , Xanthomonas , Interacciones Microbianas/genética , Xanthomonas/genética , Xanthomonas/metabolismo , Biopelículas , Expresión Génica , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo
2.
Ecol Lett ; 25(1): 189-201, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34749426

RESUMEN

Artificial selection of microbiota opens new avenues for improving plants. However, reported results lack consistency. We hypothesised that the success in artificial selection of microbiota depends on the stabilisation of community structure. In a ten-generation experiment involving 1,800 plants, we selected rhizosphere microbiota of Brachypodium distachyon associated with high or low leaf greenness, a proxy of plant performance. The microbiota structure showed strong fluctuations during an initial transitory phase, with no detectable leaf greenness heritability. After five generations, the microbiota structure stabilised, concomitantly with heritability in leaf greenness. Selection, initially ineffective, did successfully alter the selected property as intended, especially for high selection. We show a remarkable correlation between the variability in plant traits and selected microbiota structures, revealing two distinct sub-communities associated with high or low leaf greenness, whose abundance was significantly steered by directional selection. Understanding microbiota structure stabilisation will improve the reliability of artificial microbiota selection.


Asunto(s)
Microbiota , Rizosfera , Fenotipo , Reproducibilidad de los Resultados , Microbiología del Suelo
3.
Microorganisms ; 9(5)2021 May 12.
Artículo en Inglés | MEDLINE | ID: mdl-34066089

RESUMEN

A promising keratin-degrading strain from the genus Chryseobacterium (Chryseobacterium sp. KMC2) was investigated using comparative genomic tools against three publicly available reference genomes to reveal the keratinolytic potential for biosynthesis of valuable secondary metabolites. Genomic features and metabolic potential of four species were compared, showing genomic differences but similar functional categories. Eleven different secondary metabolite gene clusters of interest were mined from the four genomes successfully, including five common ones shared across all genomes. Among the common metabolites, we identified gene clusters involved in biosynthesis of flexirubin-type pigment, microviridin, and siderophore, showing remarkable conservation across the four genomes. Unique secondary metabolite gene clusters were also discovered, for example, ladderane from Chryseobacterium sp. KMC2. Additionally, this study provides a more comprehensive understanding of the potential metabolic pathways of keratin utilization in Chryseobacterium sp. KMC2, with the involvement of amino acid metabolism, TCA cycle, glycolysis/gluconeogenesis, propanoate metabolism, and sulfate reduction. This work uncovers the biosynthesis of secondary metabolite gene clusters from four keratinolytic Chryseobacterium species and shades lights on the keratinolytic potential of Chryseobacterium sp. KMC2 from a genome-mining perspective, can provide alternatives to valorize keratinous materials into high-value bioactive natural products.

4.
Front Microbiol ; 12: 674556, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34127925

RESUMEN

Plant-plant associations, notably cereal-legume intercropping, have been proposed in agroecology to better value resources and thus reduce the use of chemical inputs in agriculture. Wheat-pea intercropping allows to decreasing the use of nitrogen fertilization through ecological processes such as niche complementarity and facilitation. Rhizosphere microbial communities may account for these processes, since they play a major role in biogeochemical cycles and impact plant nutrition. Still, knowledge on the effect of intecropping on the rhizosphere microbiota remains scarce. Especially, it is an open question whether rhizosphere microbial communities in cereal-legume intercropping are the sum or not of the microbiota of each plant species cultivated in sole cropping. In the present study, we assessed the impact of wheat and pea in IC on the diversity and structure of their respective rhizosphere microbiota. For this purpose, several cultivars of wheat and pea were cultivated in sole and intercropping. Roots of wheat and pea were collected separately in intercropping for microbiota analyses to allow deciphering the effect of IC on the bacterial community of each plant species/cultivar tested. Our data confirmed the well-known specificity of the rhizosphere effect and further stress the differentiation of bacterial communities between pea genotypes (Hr and hr). As regards the intercropping effect, diversity and structure of the rhizosphere microbiota were comparable to sole cropping. However, a specific co-occurrence pattern in each crop rhizosphere due to intercropping was revealed through network analysis. Bacterial co-occurrence network of wheat rhizosphere in IC was dominated by OTUs belonging to Alphaproteobacteria, Bacteroidetes and Gammaproteobacteria. We also evidenced a common network found in both rhizosphere under IC, indicating the interaction between the plant species; this common network was dominated by Acidobacteria, Alphaproteobacteria, and Bacteroidetes, with three OTUs belonging to Acidobacteria, Betaproteobacteria and Chloroflexi that were identified as keystone taxa. These findings indicate more complex rhizosphere bacterial networks in intercropping. Possible implications of these conclusions are discussed in relation with the functioning of rhizosphere microbiota in intercropping accounting for its beneficial effects.

5.
FEMS Microbiol Ecol ; 97(4)2021 03 31.
Artículo en Inglés | MEDLINE | ID: mdl-33587112

RESUMEN

A soil column split-root experiment was designed to investigate the ability of apple replant disease (ARD)-causing agents to spread in soil. 'M26' apple rootstocks grew into a top layer of Control soil, followed by a barrier-free split-soil layer (Control soil/ARD soil). We observed a severely reduced root growth, concomitant with enhanced gene expression of phytoalexin biosynthetic genes and phytoalexin content in roots from ARD soil, indicating a pronounced local plant defense response. Amplicon sequencing (bacteria, archaea, fungi) revealed local shifts in diversity and composition of microorganisms in the rhizoplane of roots from ARD soil. An enrichment of operational taxonomic units affiliated to potential ARD fungal pathogens (Ilyonectria and Nectria sp.) and bacteria frequently associated with ARD (Streptomyces, Variovorax) was noted. In conclusion, our integrated study supports the idea of ARD being local and not spreading into surrounding soil, as only the roots in ARD soil were affected in terms of growth, phytoalexin biosynthetic gene expression, phytoalexin production and altered microbiome structure. This study further reinforces the microbiological nature of ARD, being likely triggered by a disturbed soil microbiome enriched with low mobility of the ARD-causing agents that induce a strong plant defense and rhizoplane microbiome dysbiosis, concurring with root damage.


Asunto(s)
Malus , Microbiota , Disbiosis , Humanos , Raíces de Plantas , Suelo , Microbiología del Suelo
6.
ISME J ; 15(4): 1207-1221, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33408369

RESUMEN

Climate change alters frequencies and intensities of soil drying-rewetting and freezing-thawing cycles. These fluctuations affect soil water availability, a crucial driver of soil microbial activity. While these fluctuations are leaving imprints on soil microbiome structures, the question remains if the legacy of one type of weather fluctuation (e.g., drying-rewetting) affects the community response to the other (e.g., freezing-thawing). As both phenomenons give similar water availability fluctuations, we hypothesized that freezing-thawing and drying-rewetting cycles have similar effects on the soil microbiome. We tested this hypothesis by establishing targeted microcosm experiments. We created a legacy by exposing soil samples to a freezing-thawing or drying-rewetting cycle (phase 1), followed by an additional drying-rewetting or freezing-thawing cycle (phase 2). We measured soil respiration and analyzed soil microbiome structures. Across experiments, larger CO2 pulses and changes in microbiome structures were observed after rewetting than thawing. Drying-rewetting legacy affected the microbiome and CO2 emissions upon the following freezing-thawing cycle. Conversely, freezing-thawing legacy did not affect the microbial response to the drying-rewetting cycle. Our results suggest that drying-rewetting cycles have stronger effects on soil microbial communities and CO2 production than freezing-thawing cycles and that this pattern is mediated by sustained changes in soil microbiome structures.


Asunto(s)
Microbiología del Suelo , Suelo , Cambio Climático , Desecación , Congelación
7.
Sci Total Environ ; 761: 143281, 2021 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-33190895

RESUMEN

Keratin is an insoluble fibrous protein from natural environments, which can be recycled to value-added products by keratinolytic microorganisms. A microbial consortium with efficient keratinolytic activity was previously enriched from soil, but the genetic basis behind its remarkable degradation properties was not investigated yet. To identify the metabolic pathways involved in keratinolysis and clarify the observed synergy among community members, shotgun metagenomic sequencing was performed to reconstruct metagenome-assembled genomes. More than 90% genera of the enriched bacterial consortium were affiliated to Chryseobacterium, Stenotrophomonas, and Pseudomonas. Metabolic potential and putative keratinases were predicted from the metagenomic annotation, providing the genetic basis of keratin degradation. Furthermore, metabolic pathways associated with keratinolytic processes such as amino acid metabolism, disulfide reduction and urea cycle were investigated from seven high-quality metagenome-assembled genomes, revealing the potential metabolic cooperation related to keratin degradation. This knowledge deepens the understanding of microbial keratinolytic mechanisms at play in a complex community, pinpointing the significance of synergistic interactions, which could be further used to optimize industrial keratin degradation processes.


Asunto(s)
Queratinas , Metagenoma , Bacterias/genética , Biodegradación Ambiental , Metagenómica
8.
FEMS Microbiol Ecol ; 96(12)2020 12 02.
Artículo en Inglés | MEDLINE | ID: mdl-33045057

RESUMEN

Apple replant disease (ARD) occurs worldwide in apple orchards and nurseries and leads to a severe growth and productivity decline. Despite research on the topic, its causality remains unclear. In a split-root experiment, we grew ARD-susceptible 'M26' apple rootstocks in different substrate combinations (+ARD: ARD soil; -ARD: gamma-irradiated ARD soil; and Control: soil with no apple history). We investigated the microbial community composition by 16S rRNA gene amplicon sequencing (bacteria and archaea) along the soil-root continuum (bulk soil, rhizosphere and rhizoplane). Significant differences in microbial community composition and structure were found between +ARD and -ARD or +ARD and Control along the soil-root continuum, even for plants exposed simultaneously to two different substrates (-ARD/+ARD and Control/+ARD). The substrates in the respective split-root compartment defined the assembly of root-associated microbial communities, being hardly influenced by the type of substrate in the respective neighbor compartment. Root-associated representatives from Actinobacteria were the most dynamic taxa in response to the treatments, suggesting a pivotal role in ARD. Altogether, we evidenced an altered state of the microbial community in the +ARD soil, displaying altered alpha- and beta-diversity, which in turn will also impact the normal development of apple rhizosphere and rhizoplane microbiota (dysbiosis), concurring with symptom appearance.


Asunto(s)
Malus , Raíces de Plantas , ARN Ribosómico 16S/genética , Rizosfera , Microbiología del Suelo
9.
PLoS One ; 15(1): e0228108, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32004342

RESUMEN

Although organic matter may accumulate sometimes (e.g. lignocellulose in peat bog), most natural biodegradation processes are completed until full mineralization. Such transformations are often achieved by the concerted action of communities of interacting microbes, involving different species each performing specific tasks. These interactions can give rise to novel "community-intrinsic" properties, through e.g. activation of so-called "silent genetic pathways" or synergistic interplay between microbial activities and functions. Here we studied the microbial community-based degradation of keratin, a recalcitrant biological material, by four soil isolates, which have previously been shown to display synergistic interactions during biofilm formation; Stenotrophomonas rhizophila, Xanthomonas retroflexus, Microbacterium oxydans and Paenibacillus amylolyticus. We observed enhanced keratin weight loss in cultures with X. retroflexus, both in dual and four-species co-cultures, as compared to expected keratin degradation by X. retroflexus alone. Additional community intrinsic properties included accelerated keratin degradation rates and increased biofilm formation on keratin particles. Comparison of secretome profiles of X. retroflexus mono-cultures to co-cultures revealed that certain proteases (e.g. serine protease S08) were significantly more abundant in mono-cultures, whereas co-cultures had an increased abundance of proteins related to maintaining the redox environment, e.g. glutathione peroxidase. Hence, one of the mechanisms related to the community intrinsic properties, leading to enhanced degradation from co-cultures, might be related to a switch from sulfitolytic to proteolytic functions between mono- and co-cultures, respectively.


Asunto(s)
Bacterias/metabolismo , Queratinas/metabolismo , Consorcios Microbianos/fisiología , Biodegradación Ambiental , Biopelículas , Técnicas de Cocultivo , Interacciones Microbianas , Microbiología del Suelo
10.
Microb Biotechnol ; 13(4): 984-996, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32110845

RESUMEN

Microbial conversion through enzymatic reactions has received a lot of attention as a cost-effective and environmentally friendly way to recover amino acids and short peptides from keratin materials. However, accurate assessment of microbial keratinase activity is not straightforward, and current available methods lack sensitivity and standardization. Here, we suggest an optimized Azokeratin assay, with substrate generated directly from azo-dyed raw keratin material. We introduced supernatant filtration in the protocol for optimal stopping of keratinase reactions instead of the widely used trichloroacetic acid (TCA), as it generated biases and impacted the sensitivity. We furthermore suggest a method for standardization of keratinase activity signals using proteinase K, a well-known keratinase, as a reference enabling reproducibility between studies. Lastly, we evaluated our developed method with several bacterial isolates through benchmarking against a commercial assay (Keratin Azure). Under different setups, the Azokeratin method was more sensitive than commonly used Keratin Azure-based assays (3-fold). We argue that this method could be applied with any type of keratin substrate, enabling more robust and sensitive results which can be used for further comparison with other studies, thus representing an important progress within the field of microbial keratin degradation.


Asunto(s)
Queratinas , Péptido Hidrolasas , Estándares de Referencia , Reproducibilidad de los Resultados
11.
J Hazard Mater ; 382: 121173, 2020 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-31563088

RESUMEN

For a century, the MetalEurop foundry released metals into the river "La Deûle". Previous work revealed higher microbial diversity in metal impacted sediments, and horizontal gene transfer mediated by conjugative plasmids was suggested to drive the community adaptation to metals. We used an integrative state-of-the-art molecular approach coupling quantitative PCR, conjugation assays, flow cytometry, fluorescence activated cell sorting and 16S rRNA gene amplicon sequencing to investigate the presence of conjugative plasmids and their propagation patterns in sediment microbiomes. We highlighted the existence of a native broad-host range IncP conjugative plasmid population in polluted sediments, confirming their ecological importance for microbial adaptation. However, despite incompatibilities and decreased transfer frequencies with our own alien IncP plasmid, we evidenced that a wide diversity of bacterial members was still prone to uptake the plasmid, indicating that sediment microbial communities are still inclined to receive conjugative plasmids from the same group. We observed that metal pollution favoured exogenous plasmid transfer to specific metal-selected bacteria, which are likely coming from upstream sources (e.g. wastewater treatment plant, farms…). Altogether, our results suggest that MetalEurop sediments are hotspots for gene transfer via plasmids, acting as an "environmental reservoir" for microbes and mobile elements released by human activities.


Asunto(s)
Sedimentos Geológicos/microbiología , Plásmidos , Ríos/microbiología , Transferencia de Gen Horizontal , Metales , Microbiota , ARN Ribosómico 16S , Reacción en Cadena en Tiempo Real de la Polimerasa , Contaminantes Químicos del Agua , Contaminación del Agua
12.
ISME J ; 13(12): 3054-3066, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31455806

RESUMEN

Environmental microbes frequently live in multispecies biofilms where mutualistic relationships and co-evolution may occur, defining spatial organization for member species and overall community functions. In this context, intrinsic properties emerging from microbial interactions, such as efficient organization optimizing growth and activities in multispecies biofilms, may become the object of fitness selection. However, little is known on the nature of underlying interspecies interactions during establishment of a predictable spatial organization within multispecies biofilms. We present a comparative metatranscriptomic analysis of bacterial strains residing in triple-species and four-species biofilms, aiming at deciphering molecular mechanisms underpinning bacterial interactions responsible of the remarkably enhanced biomass production and associated typical spatial organization they display. Metatranscriptomic profiles concurred with changes in micro-site occupation in response to the addition/removal of a single species, being driven by both cooperation, competition, and facilitation processes. We conclude that the enhanced biomass production of the four-species biofilm is an intrinsic community property emerging from finely tuned space optimization achieved through concerted antagonistic and mutualistic interactions, where each species occupies a defined micro-site favoring its own growth. Our results further illustrate how molecular mechanisms can be better interpreted when supported by visual imaging of actual microscopic spatial organization, and we propose phenotypic adaptation selected by social interactions as molecular mechanisms stabilizing microbial communities.


Asunto(s)
Fenómenos Fisiológicos Bacterianos , Biopelículas , Interacciones Microbianas , Bacterias/clasificación , Bacterias/genética , Bacterias/crecimiento & desarrollo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Biomasa , Microbiota
13.
Front Microbiol ; 10: 725, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31057496

RESUMEN

Manure application to agricultural soil introduces antibiotic residues and increases the abundance of antibiotic-resistant bacteria (ARB) carrying antibiotic resistance genes (ARGs), often located on mobile genetic elements (MGEs). The rhizosphere is regarded as a hotspot of microbial activity and gene transfer, which can alter and prolong the effects of organic fertilizers containing antibiotics. However, not much is known about the influence of plants on the effects of doxycycline applied to soil via manure. In this study, the effects of manure spiked with or without doxycycline on the prokaryotic community composition as well as on the relative abundance of ARGs and MGEs in lettuce rhizosphere and bulk soil were investigated by means of a polyphasic cultivation-independent approach. Samples were taken 42 days after manure application, and total community DNA was extracted. Besides a pronounced manure effect, doxycycline spiking caused an additional enrichment of ARGs and MGEs. High-throughput quantitative PCR revealed an increase in tetracycline, aminoglycoside, and macrolide-lincosamide-streptogramin B (MLSB) resistance genes associated with the application of manure spiked with doxycycline. This effect was unexpectedly lower in the rhizosphere than in bulk soil, suggesting a faster dissipation of the antibiotic and a more resilient prokaryotic community in the rhizosphere. Interestingly, the tetracycline resistance gene tetA(P) was highly enriched in manure-treated bulk soil and rhizosphere, with highest values observed in doxycycline-treated bulk soil, concurring with an enrichment of Clostridia. Thus, the gene tetA(P) might be a suitable marker of soil contamination by ARB, ARGs, and antibiotics of manure origin. These findings illustrate that the effects of manure and doxycycline on ARGs and MGEs differ between rhizosphere and bulk soil, which needs to be considered when assessing risks for human health connected to the spread of ARGs in the environment.

14.
Environ Microbiol ; 21(7): 2426-2439, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-30990945

RESUMEN

Long-term agricultural fertilization strategies gradually change soil properties including the associated microbial communities. Cultivated crops recruit beneficial microbes from the surrounding soil environment via root exudates. In this study, we aimed to investigate the effects of long-term fertilization strategies across field sites on the rhizosphere prokaryotic (Bacteria and Archaea) community composition and plant performance. We conducted growth chamber experiments with lettuce (Lactuca sativa L.) cultivated in soils from two long-term field experiments, each of which compared organic versus mineral fertilization strategies. 16S rRNA gene amplicon sequencing revealed the assemblage of a rhizosphere core microbiota shared in all lettuce plants across soils, going beyond differences in community composition depending on field site and fertilization strategies. The enhanced expression of several plant genes with roles in oxidative and biotic stress signalling pathways in lettuce grown in soils with organic indicates an induced physiological status in plants. Lettuce plants grown in soils with different fertilization histories were visibly free of stress symptoms and achieved comparable biomass. This suggests a positive aboveground plant response to belowground plant-microbe interactions in the rhizosphere. Besides effects of fertilization strategy and field site, our results demonstrate the crucial role of the plant in driving rhizosphere microbiota assemblage.


Asunto(s)
Bacterias/aislamiento & purificación , Fertilizantes/análisis , Lactuca/microbiología , Minerales/metabolismo , Microbiología del Suelo , Bacterias/genética , Bacterias/crecimiento & desarrollo , Bacterias/metabolismo , Biomasa , Productos Agrícolas/crecimiento & desarrollo , Productos Agrícolas/microbiología , Lactuca/metabolismo , Microbiota , Minerales/análisis , Raíces de Plantas/crecimiento & desarrollo , Raíces de Plantas/microbiología , ARN Ribosómico 16S/genética , Rizosfera , Suelo/química
15.
ISME J ; 13(5): 1345-1359, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30692629

RESUMEN

The active layer of soil overlaying permafrost in the Arctic is subjected to annual changes in temperature and soil chemistry, which we hypothesize to affect the overall soil microbial community. We investigated changes in soil microorganisms at different temperatures during warming and freezing of the active layer soil from Svalbard, Norway. Soil community data were obtained by direct shotgun sequencing of total extracted RNA. No changes in soil microbial communities were detected when warming from -10 to -2 °C or when freezing from -2 to -10 °C. In contrast, within a few days we observed changes when warming from -2 to +2 °C with a decrease in fungal rRNA and an increase in several OTUs belonging to Gemmatimonadetes, Bacteroidetes and Betaproteobacteria. Even more substantial changes occurred when incubating at 2 °C for 16 days, with declines in total fungal potential activity and decreases in oligotrophic members from Actinobacteria and Acidobacteria. Additionally, we detected an increase in transcriptome sequences of bacterial phyla Bacteriodetes, Firmicutes, Betaproteobacteria and Gammaproteobacteria-collectively presumed to be copiotrophic. Furthermore, we detected an increase in putative bacterivorous heterotrophic flagellates, likely due to predation upon the bacterial community via grazing. Although this grazing activity may explain relatively large changes in the bacterial community composition, no changes in total 16S rRNA gene copy number were observed and the total RNA level remained stable during the incubation. Together, these results are showing the first comprehensive ecological evaluation across prokaryotic and eukaryotic microbial communities on thawing and freezing of soil by application of the TotalRNA technique.


Asunto(s)
Bacterias/aislamiento & purificación , Eucariontes/aislamiento & purificación , Hielos Perennes/microbiología , Bacterias/clasificación , Bacterias/genética , Bacterias/metabolismo , Eucariontes/clasificación , Eucariontes/genética , Eucariontes/metabolismo , Congelación , Procesos Heterotróficos , Microbiota , Noruega , Hielos Perennes/química , ARN Ribosómico 16S/genética , Microbiología del Suelo , Svalbard
16.
Front Microbiol ; 10: 2835, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31998244

RESUMEN

Ralstonia solanacearum (biovar2, race3) is the causal agent of bacterial wilt and this quarantine phytopathogen is responsible for massive losses in several commercially important crops. Biological control of this pathogen might become a suitable plant protection measure in areas where R. solanacearum is endemic. Two bacterial strains, Bacillus velezensis (B63) and Pseudomonas fluorescens (P142) with in vitro antagonistic activity toward R. solanacearum (B3B) were tested for rhizosphere competence, efficient biological control of wilt symptoms on greenhouse-grown tomato, and effects on the indigenous rhizosphere prokaryotic communities. The population densities of B3B and the antagonists were estimated in rhizosphere community DNA by selective plating, real-time quantitative PCR, and R. solanacearum-specific fliC PCR-Southern blot hybridization. Moreover, we investigated how the pathogen and/or the antagonists altered the composition of the tomato rhizosphere prokaryotic community by 16S rRNA gene amplicon sequencing. B. velezensis (B63) and P. fluorescens (P142)-inoculated plants showed drastically reduced wilt disease symptoms, accompanied by significantly lower abundance of the B3B population compared to the non-inoculated pathogen control. Pronounced shifts in prokaryotic community compositions were observed in response to the inoculation of B63 or P142 in the presence or absence of the pathogen B3B and numerous dynamic taxa were identified. Confocal laser scanning microscopy (CLSM) visualization of the gfp-tagged antagonist P142 revealed heterogeneous colonization patterns and P142 was detected in lateral roots, root hairs, epidermal cells, and within xylem vessels. Although competitive niche exclusion cannot be excluded, it is more likely that the inoculation of P142 or B63 and the corresponding microbiome shifts primed the plant defense against the pathogen B3B. Both inoculants are promising biological agents for efficient control of R. solanacearum under field conditions.

17.
Front Microbiol ; 10: 3010, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31998278

RESUMEN

The capacity of microbes to degrade recalcitrant materials has been extensively explored for environmental remediation and industrial production. Significant achievements have been made with single strains, but focus is now going toward the use of microbial consortia owning to their functional stability and efficiency. However, assembly of simplified microbial consortia (SMC) from complex environmental communities is still far from trivial due to large diversity and the effect of biotic interactions. Here we propose a strategy, based on enrichment and dilution-to-extinction cultures, to construct SMC with reduced diversity for degradation of keratinous materials. Serial dilutions were performed on a keratinolytic microbial consortium pre-enriched from a soil sample, monitoring the dilution effect on community growth and enzymatic activities. An appropriate dilution regime (10-9) was selected to construct a SMC library from the enriched microbial consortium. Further sequencing analysis and keratinolytic activity assays demonstrated that obtained SMC displayed actual reduced microbial diversity, together with various taxonomic composition, and biodegradation capabilities. More importantly, several SMC possessed equivalent levels of keratinolytic efficiency compared to the initial consortium, showing that simplification can be achieved without loss of function and efficiency. This methodology is also applicable to other types of recalcitrant material degradation involving microbial consortia, thus considerably broadening its application scope.

18.
FEMS Microbiol Ecol ; 95(1)2019 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-30295723

RESUMEN

Municipal sewage sludge (MSS) is often directly applied to fields despite concerns regarding the spread of harmful microbes and associated resistance genes (RGs). In this four month microcosm study, the dynamics of prokaryotic communities in agricultural soil and changes in mobile genetic elements and RGs following amendment with stabilized MSS were investigated. TaqMan-based quantitative real-time (q)PCR showed that RG prevalence was high when compared to untreated soil and genes for class 1 integrons (intI1), streptomycin RGs (aadA, strA) and tetracycline RG (tet(W)) were detectable for the duration of the four month study. High-throughput qPCR revealed an enhanced prevalence of aminoglycoside RGs (aacC, aadE), macrolide lincosamide-streptogramin B RGs (ermB, ermF) and tetracycline RGs (tet(L), tet(M), tet(X)). Illumina MiSeq sequencing of 16S rRNA gene fragments amplified from total community DNA revealed significant changes in the prokaryotic community composition both at phylum and genus levels, with lower richness and evenness after MSS amendment followed by gradual recovery after 119 days. Conjugative plasmids captured from MSS using exogenous isolation belonged predominantly to the IncP-1 plasmid group. Our results provide new insights into short- and medium-term effects of MSS amendment on soil prokaryotic communities, including the mobilome and resistome.


Asunto(s)
Antibacterianos/farmacología , Bacterias/efectos de los fármacos , Bacterias/aislamiento & purificación , Farmacorresistencia Bacteriana , Aguas del Alcantarillado/microbiología , Microbiología del Suelo , Bacterias/clasificación , Bacterias/genética , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Integrones , Macrólidos/farmacología , Plásmidos/genética , Plásmidos/metabolismo , Aguas del Alcantarillado/química , Suelo/química , Estreptomicina/farmacología , Tetraciclina/farmacología
19.
Microbiome ; 6(1): 223, 2018 12 13.
Artículo en Inglés | MEDLINE | ID: mdl-30545417

RESUMEN

BACKGROUND: It remains unclear whether adaptation and changes in diversity associated to a long-term perturbation are sufficient to ensure functional resilience of soil microbial communities. We used RNA-based approaches (16S rRNA gene transcript amplicon coupled to shotgun mRNA sequencing) to study the legacy effects of a century-long soil copper (Cu) pollution on microbial activity and composition, as well as its effect on the capacity of the microbial community to react to temporal fluctuations. RESULTS: Despite evidence of microbial adaptation (e.g., iron homeostasis and avoidance/resistance strategies), increased heterogeneity and richness loss in transcribed gene pools were observed with increasing soil Cu, together with an unexpected predominance of phage mRNA signatures. Apparently, phage activation was either triggered directly by Cu, or indirectly via enhanced expression of DNA repair/SOS response systems in Cu-exposed bacteria. Even though total soil carbon and nitrogen had accumulated with increasing Cu, a reduction in temporally induced mRNA functions was observed. Microbial temporal response groups (TRGs, groups of microbes with a specific temporal response) were heavily affected by Cu, both in abundance and phylogenetic composition. CONCLUSION: Altogether, results point toward a Cu-mediated "decoupling" between environmental fluctuations and microbial activity, where Cu-exposed microbes stopped fulfilling their expected contributions to soil functioning relative to the control. Nevertheless, some functions remained active in February despite Cu, concomitant with an increase in phage mRNA signatures, highlighting that somehow, microbial activity is still happening under these adverse conditions.


Asunto(s)
Bacterias/virología , Bacteriófagos/aislamiento & purificación , Cobre/farmacología , Perfilación de la Expresión Génica/métodos , Metagenómica/métodos , Suelo/química , Bacterias/clasificación , Bacterias/genética , Bacteriófagos/genética , Cobre/química , Contaminación Ambiental , Regulación Bacteriana de la Expresión Génica/efectos de los fármacos , Regulación Viral de la Expresión Génica/efectos de los fármacos , Filogenia , ARN Ribosómico 16S/genética , Estaciones del Año , Análisis de Secuencia de ARN/métodos , Microbiología del Suelo
20.
Bioresour Technol ; 270: 303-310, 2018 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-30236907

RESUMEN

Keratin refers to a group of insoluble and recalcitrant protein materials. Slaughterhouses produce large amount of keratinous byproducts, which are either disposed or poorly valorized through costly thermochemical processes for animal feed formulation. Learning from nature, keratinolytic microbial consortia stand as a cost-efficient and environmental friendly way to valorize this recalcitrant resource. Directed selection was applied to enrich soil-born microbial consortia, using sequential batch cultivations in keratin medium, while measuring enzymes activity and monitoring consortia compositions via 16S rRNA gene amplicon sequencing. A promising microbial consortium KMCG6, featuring mainly members of Bacteroidetes and Proteobacteria, was obtained. It possessed keratinolytic activity with <25% residual substrate remaining, which also displayed a high degradation reproducibility level after long-term cryopreservation. This work represents an advance in the field of α-keratin degradation with potential for practical applications.


Asunto(s)
Consorcios Microbianos , Bacteroidetes/genética , Biodegradación Ambiental , Consorcios Microbianos/genética , Proteobacteria/genética , ARN Ribosómico 16S/genética , Reproducibilidad de los Resultados , Suelo , Microbiología del Suelo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...