Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Langmuir ; 40(13): 6884-6897, 2024 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-38517367

RESUMEN

CdS, characterized by its comparatively narrow energy band gap (∼2.4 eV), is an appropriate material for prospective use as a photoanode in photoelectrochemical water splitting. Regrettably, it encounters several obstacles for practical and large-scale applications, including issues such as bulk carrier recombination and diminished conductivity. Here, we have tried to address these challenges by fabricating a novel photoelectrode (ZnO/CdS) composed of one-dimensional ZnO nanorods (NRs) decorated with two-dimensional CdS nanosheets (NSs). A facile two-step chemical method comprising electrodeposition along with chemical bath deposition is employed to synthesize the ZnO NRs, CdS NSs, and ZnO/CdS nanostructures. The prepared nanostructures have been investigated by UV-visible absorption spectroscopy, X-ray diffraction, Raman spectroscopy, transmission electron microscopy (TEM), and scanning electron microscopy. The fabricated ZnO/CdS nanostructures have shown enhanced photoelectrochemical properties due to the improvement of the semiconductor junction surface area and thereby enhanced visible light absorption. The incorporation of CdS NSs has been further found to promote the rate of the charge separation and transfer process. Subsequently, the fabricated ZnO/CdS photoelectrodes achieved a photocurrent conversion efficiency 3 times higher than that of a planar ZnO NR photoanode and showed excellent performance under visible light irradiation. The highest applied bias photon-to-current conversion efficiency (% ABPE) of about ∼0.63% has been obtained for the sample with thicker CdS NSs on ZnO NRs with a photocurrent density of ∼1.87 mA/cm2 under AM 1.5 G illumination. The newly synthesized nanostructures further demonstrate that the full photovoltaic capacity of nanomaterials is yet to be exhausted.

2.
RSC Adv ; 14(7): 4352-4361, 2024 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-38304562

RESUMEN

In this study, we report the synthesis of PbS particles having dimensions in the quantum-dot regime (13.17 to 26.91 nm) using a cyclohexane:isopropanol:dimethyl-sulfoxide surfactant-free microemulsion (CID-SFME) scheme without a capping agent. We found that with an increase in the microemulsion concentration and particle size, there was a simultaneous reduction in band gap due to the quantum confinement effect. Furthermore, a microemulsion concentration of 0.0125 M was the optimum microemulsion concentration for the growth of uniformly distributed, small particle-sized, ordered PbS nanoparticles using CID-SFME at a constant temperature and other effective parameters. From the results obtained in the present study, we believe that during the reaction, it was not the low values of viscosity and dielectric constant that were responsible for keeping PbS stabilized inside the core of the micelle of the CID microemulsion, but rather the van der Waals forces that also controlled the growth of spherical PbS. We fabricated a highly stable FTO/TiO2/PbS/PANI/NiS/C photodetector at an optimized microemulsion solution concentration. The fabricated photodetector showed a rise time of ∼0.39 s and a decay time of ∼0.22 s, with a photoresponsivity of ∼5.466 µA W-1, external quantum efficiency of ∼0.116 × 10-4%, and detectivity of 6.83 × 107 Jones. Therefore, the CID-SFME scheme is an easy, low-cost route to fabricate efficient, precise, stable, and fast-switching photodetector devices.

3.
ACS Omega ; 8(38): 34354-34363, 2023 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-37780019

RESUMEN

This paper presents a comparative study of the toxicity of pristine-ZnO and l-histidine-incorporated ZnO toward Escherichia coli (E. coli) as a Gram-negative model organism. Pristine-ZnO and l-histidine-incorporated ZnO with different l-histidine concentrations were synthesized using an open aqueous solution bath technique. XRD studies revealed the formation of polycrystalline wurtzite ZnO. The average crystallite size of the synthesized l-histidine-incorporated ZnO decreased as the concentration of l-histidine increased. The FTIR spectra showed the presence of Zn-O, CO2-/CO3-, and C-N (only in l-histidine-incorporated ZnO samples) and -OH bond vibration signals in all samples. The chemical purity of all the samples was ensured using XPS analysis. The microbial activity of these samples was investigated using E. coli. The solution with 100 µg/mL ZnO in sterile distilled water showed up to 94% growth inhibition of E. coli, establishing antibacterial activity. However, l-histidine incorporated in ZnO showed reduced antibacterial activity with the increase of the concentration of l-histidine in ZnO. Furthermore, flow cytometry studies during the interaction of ZnO and E. coli confirmed the generation of reactive oxygen species (ROS), validating its antibacterial activity. The interaction of l-histidine-incorporated ZnO and E. coli showed declining ROS with the increase in the l-histidine concentration, indicating a ZnO toxicity reduction.

4.
RSC Adv ; 13(18): 12123-12132, 2023 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-37082369

RESUMEN

Cu2ZnSnS4 (CZTS) thin films have attracted considerable attention as potential candidates for photovoltaic absorber materials. In a vacuum deposition technique, a sputtering stacked metallic layer followed by a thermal process for sulfur incorporation is used to obtain high-quality CZTS thin films. In this work, for fabricating CZTS thin films, we have done a 3LYS (3 layers), 6LYS, and 9LYS sequential deposition of Sn/ZnS/Cu metal stack (via. metallic stacked nanolayer precursors) onto Mo-coated corning glass substrate via. RF-sputtering. The prepared thin films were sulfurized in a tubular furnace at 550 °C in a gas mixture of 5% H2S + 95% Ar for 10 min. We further investigated the impact of the Sn/ZnS/Cu metal stacking layers on the quality of the thin film based on its response to light because metal inter-diffusion during sulfurization is unavoidable. The inter-diffusion of precursors is low in a 3-layer stack sample, limiting the fabricated film's performance. CZTS films with 6-layer and 9-layer stacks result in an improved photocurrent density of ∼38 µA cm-2 and ∼82 µA cm-2, respectively, compared to a 3-layer sample which has a photocurrent density of ∼19 µA cm-2. This enhancement can be attributed to the 9-layer approach's superior inter-diffusion of metallic precursors and compact, smooth CZTS microstructure evolution.

5.
Inorg Chem ; 62(12): 4861-4871, 2023 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-36920788

RESUMEN

Efficient and stable lead-free halide double perovskites (DPs) have attracted great attention for the future generation of electronic devices. Herein, we have developed a doping approach to incorporate Fe3+ ions into the Cs2NaBiCl6 crystal unit and reveal a crystallographic and optoelectronic study of the Cs2NaBi1-xFexCl6 double perovskite. We report a simple solid-state mechanochemical method that has a solvent-free, one-step, green chemistry approach for the synthesis of Cs2NaBi1-xFexCl6 phosphor. The analysis of powder X-ray diffraction (XRD) data determines the contraction of the lattice due to the incorporation of Fe3+ cations, and this effect is well supported by X-ray photoelectron spectroscopy (XPS), field emission scanning electron microscopy (FE-SEM), Raman spectroscopy, and solid-state nuclear magnetic resonance spectroscopy (ss-NMR). The band gap is reduced with increasing Fe content owing to the strong overlap of the Fe-3d orbitals with Cl-3p orbitals and shift of the valence band maxima (VBM) toward higher energies, as confirmed by ultraviolet photoelectron spectroscopy (UPS) and density functional theory (DFT) analyses. Photoluminescence (PL) studies of Cs2NaBi1-xFexCl6 phosphors exhibit a large Stokes shift, broadband emission, and increased PL intensity more than ten times for 15% of Fe content phosphor with enhancement in the average decay lifetimes (up to 38 ns) compared to pristine Cs2NaBiCl6 DP. These results indicate that the transition of dark self-trapping of excitons (STEs) into bright STEs enhances yellow emission. XRD, UV, and thermo-gravimetric analysis (TGA) confirmed that the Cs2NaB1-xFexCl6 DPs have good structural and thermal stabilities. Our findings indicate that the doping of Fe3+ cations into the Cs2NaBiCl6 lattice is a constructive strategy to enhance significantly the optoelectronic properties of these phosphors.

6.
RSC Adv ; 12(46): 30157-30166, 2022 Oct 17.
Artículo en Inglés | MEDLINE | ID: mdl-36329937

RESUMEN

Layered bismuth triiodide (BiI3) is a 2D material that has emerged as an ideal choice for optical sensors. Although BiI3 has been prepared using vacuum-based deposition techniques, there is a dearth of research studies on synthesizing this material using chemical route. The present work uses a facile spin coating method with varying rotation speeds (rpm) to fabricate BiI3 material thin films for photodetection applications. The structural, optical, and morphological study of BiI3 thin films prepared at 3000-6000 rpm were investigated. XRD analysis indicates formation of BiI3 films and revealed that BiI3 has a rhombohedral crystal structure. FESEM analysis showed that BiI3 films prepared at different rpm are homogeneous, dense, and free from cracks, flaws, and protrusions. In addition, films show an island-like morphology with grain boundaries having different grain sizes, micro gaps, and the evolution of the granular morphology of BiI3 particles. The UV spectroscopy and photoluminescence analysis revealed that BiI3 films strongly absorb light in the visible region of spectra with a high absorption coefficient of ∼104 cm-1, have an optical band gap of ∼1.51 eV. A photodetector was realised using fabricated BiI3 film obtained at an optimum spin speed of 4000 rpm. It showed rapid rise and decay times of 0.4 s and 0.5 s, a responsivity of ∼100 µA W-1, external quantum efficiency of 2.1 × 10-4%, and detectivity of ∼3.69 × 106 Jones at a bias voltage of 0 V. Our results point towards a new direction for layered 2D BiI3 materials for the application in self-biased photodetectors.

7.
ACS Omega ; 7(36): 31877-31887, 2022 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-36120025

RESUMEN

ZrBi2Se6 nanoflower-like morphology was successfully prepared using a solvothermal method, followed by a quenching process for photoelectrochemical water splitting applications. The formation of ZrBi2Se6 was confirmed by field emission scanning electron microscopy (FE-SEM), X-ray diffraction (XRD), Raman spectroscopy, and X-ray photoelectron spectroscopy (XPS). The estimated value of work function and band gap were found to be 5.5 and 2.26 eV measured using diffuse reflection spectroscopy and ultraviolet photoelectron spectroscopy, suggesting the potential candidate for water splitting. The highest current density of 9.7 µA/cm2 has been observed for the ZrBi2Se6 photoanode for the applied potential of 0.5 V vs SCE. The flat-band potential value was -0.46 V, and the 1.85 nm width of the depletion region is estimated from the Mott-Schottky (MS) analysis. It also reveals that the charge carrier density for the ZrBi2Se6 nanoflowers is 4.8 × 1015 cm-3. The negative slope of the MS plot indicates that ZrBi2Se6 is a p-type semiconductor. It was observed that ZrBi2Se6 nanoflowers had a high charge transfer resistance of ∼730 kΩ and equivalent capacitance of ∼40 nF calculated using electrochemical impedance spectroscopy (EIS) measurements. Using chronoamperometry, the estimated rise time and decay time were 50 ms and 0.25 s, respectively, which reveals the fast photocurrent response and excellent PEC performance of the ZrBi2Se6 photoanode. Furthermore, an attempt has been made to explain the PEC activity of ZrBi2Se6 nanoflowers using an energy band diagram. Thus, the initial results on ZrBi2Se6 nanoflowers appear promising for the PEC activity toward water splitting.

8.
Phys Chem Chem Phys ; 23(15): 9553-9560, 2021 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-33885069

RESUMEN

Cu2ZnGeSe4 (CZGSe) is a promising earth-abundant and non-toxic semiconductor material for large-scale thin-film solar cell applications. Herein, we have employed a joint computational and experimental approach to characterize and assess the structural, optoelectronic, and heterojunction band offset and alignment properties of a CZGSe solar absorber. The CZGSe films were successfully prepared using DC-sputtering and e-beam evaporation systems and confirmed by XRD and Raman spectroscopy analyses. The CZGSe films exhibit a bandgap of 1.35 eV, as estimated from electrochemical cyclic voltammetry (CV) measurements and validated by first-principles density functional theory (DFT) calculations, which predicts a bandgap of 1.38 eV. A fabricated device based on the CZGSe as a light absorber and CdS as a buffer layer yields power conversion efficiency (PCE) of 4.4% with VOC of 0.69 V, FF of 37.15, and Jsc of 17.12 mA cm-2. Therefore, we suggest that interface and band offset engineering represent promising approaches to improve the performance of CZGSe devices by predicting a type-II staggered band alignment with a small conduction band offset of 0.18 eV at the CZGSe/CdS interface.

9.
Chem Mater ; 33(6): 1983-1993, 2021 Mar 23.
Artículo en Inglés | MEDLINE | ID: mdl-33840893

RESUMEN

Ternary Cu2SnS3 (CTS) is an attractive nontoxic and earth-abundant absorber material with suitable optoelectronic properties for cost-effective photoelectrochemical applications. Herein, we report the synthesis of high-quality CTS nanoparticles (NPs) using a low-cost facile hot injection route, which is a very simple and nontoxic synthesis method. The structural, morphological, optoelectronic, and photoelectrochemical (PEC) properties and heterojunction band alignment of the as-synthesized CTS NPs have been systematically characterized using various state-of-the-art experimental techniques and atomistic first-principles density functional theory (DFT) calculations. The phase-pure CTS NPs confirmed by X-ray diffraction (XRD) and Raman spectroscopy analyses have an optical band gap of 1.1 eV and exhibit a random distribution of uniform spherical particles with size of approximately 15-25 nm as determined from high-resolution transmission electron microscopy (HR-TEM) images. The CTS photocathode exhibits excellent photoelectrochemical properties with PCE of 0.55% (fill factor (FF) = 0.26 and open circuit voltage (Voc) = 0.54 V) and photocurrent density of -3.95 mA/cm2 under AM 1.5 illumination (100 mW/cm2). Additionally, the PEC activities of CdS and ZnS NPs are investigated as possible photoanodes to create a heterojunction with CTS to enhance the PEC activity. CdS is demonstrated to exhibit a higher current density than ZnS, indicating that it is a better photoanode material to form a heterojunction with CTS. Consistently, we predict a staggered type-II band alignment at the CTS/CdS interface with a small conduction band offset (CBO) of 0.08 eV compared to a straddling type-I band alignment at the CTS/ZnS interface with a CBO of 0.29 eV. The observed small CBO at the type-II band aligned CTS/CdS interface points to efficient charge carrier separation and transport across the interface, which are necessary to achieve enhanced PEC activity. The facile CTS synthesis, PEC measurements, and heterojunction band alignment results provide a promising approach for fabricating next-generation Cu-based light-absorbing materials for efficient photoelectrochemical applications.

10.
ACS Omega ; 6(5): 3470-3482, 2021 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-33585733

RESUMEN

Few works are reported on solvothermal preparation of nanoparticles by utilizing acetone alone without a surfactant. This synthesis approach is found to be prominent for producing the mesoporous structure, which is crucial in improving the dye loading of the photoanode. In addition, doping of metal ions is advantageous in order to bring down the excitation energy, which is promising for boosting the performance of the doped oxides. This research aims to synthesize various kinds of doped-TiO2 nanocrystals to serve as photoanode materials in dye-sensitized solar cells (DSSCs). An X-ray diffraction study evidenced the existence of the crystalline phase in pure and doped-TiO2 nanocrystals. Rietveld refinement study showed the mixed phases of crystalline TiO2 in the CrT, CuNT, and ST as compared to a single anatase phase in the samples PT, AgT, BT, CoT, FeT, SnT, ZT, VT, and ZMT. The absorption spectroscopy analysis demonstrated the reduced optical band gap from 3.10 to 2.79 eV. Scanning electron microscopy investigation endorsed the formation of TiO2 mesoporous microspheres with a mean diameter ranging from 200 to 331 nm along with a nanocrystal diameter ranging from 10 to 20 nm. Doping with the different dopants enhanced the conversion efficiency of DSSCs from 1.31 to ∼6%. Furthermore, we have performed the electrochemical impedance spectroscopy of DSSCs, and the findings are presented.

11.
Chemistry ; 27(26): 7408-7417, 2021 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-33502782

RESUMEN

Lead-free double perovskites have emerged as stable and non-toxic alternatives to Pb-halide perovskites. Herein, the synthesis of Fe-doped Cs2 AgBiCl6 lead-free double perovskites are reported that display blue emission using an antisolvent method. The crystal structure, morphology, optical properties, band structure, and stability of the Fe-doped double perovskites were investigated systematically. Formation of the Fe-doped Cs2 AgBiCl6 double perovskite is confirmed by X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS) analysis. XRD and thermo-gravimetric analysis (TGA) shows that the Cs2 AgBiCl6 double perovskite has high structural and thermal stability, respectively. Field emission scanning electron microscopy (FE-SEM) analysis revealed the formation of dipyramidal shape Cs2 AgBiCl6 crystals. Furthermore, energy-dispersive X-ray spectroscopy (EDS) mapping shows the overlapping of Cs, Bi, Ag, Fe, and Cl elements and homogenous incorporation of Fe in Cs2 AgBiCl6 double perovskite. The Fe-doped Cs2 AgBiCl6 double perovskite shows a strong absorption at 380 nm. It extends up to 700 nm, suggesting that sub-band gap states transition may originate from the surface defect of the doped perovskite material. The radiative kinetics of the crystals was studied using the time-correlated single-photon counting (TCSPC) technique. Lattice parameters and band gap value of the Fe-doped Cs2 AgBiCl6 double perovskites predicted by the density functional theory (DFT) calculations are confirmed by XRD and UV/Visible spectroscopy analysis. Time-dependent photo-response characteristics of the Fe-doped Cs2 AgBiCl6 double perovskite show fast response and recovery time of charge carriers. We believe that the successful incorporation of Fe in lead-free, environmentally friendly Cs2 AgBiCl6 double perovskite can open a new class of doped double perovskites with significant potential optoelectronics devices fabrication and photocatalytic applications.

12.
ACS Appl Energy Mater ; 3(6): 5153-5162, 2020 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-32905359

RESUMEN

To improve the constraints of kesterite Cu2ZnSnS4 (CZTS) solar cell, such as undesirable band alignment at p-n interfaces, bandgap tuning, and fast carrier recombination, cadmium (Cd) is introduced into CZTS nanocrystals forming Cu2Zn1-x Cd x SnS4 through cost-effective solution-based method without postannealing or sulfurization treatments. A synergetic experimental-theoretical approach was employed to characterize and assess the optoelectronic properties of Cu2Zn1-x Cd x SnS4 materials. Tunable direct band gap energy ranging from 1.51 to 1.03 eV with high absorption coefficient was demonstrated for the Cu2Zn1-x Cd x SnS4 nanocrystals with changing Zn/Cd ratio. Such bandgap engineering in Cu2Zn1-x Cd x SnS4 helps in effective carrier separation at interface. Ultrafast spectroscopy reveals a longer lifetime and efficient separation of photoexcited charge carriers in Cu2CdSnS4 (CCTS) nanocrystals compared to that of CZTS. We found that there exists a type-II staggered band alignment at the CZTS (CCTS)/CdS interface, from cyclic voltammetric (CV) measurements, corroborated by first-principles density functional theory (DFT) calculations, predicting smaller conduction band offset (CBO) at the CCTS/CdS interface as compared to the CZTS/CdS interface. These results point toward efficient separation of photoexcited carriers across the p-n junction in the ultrafast time scale and highlight a route to improve device performances.

13.
RSC Adv ; 10(43): 25988-25998, 2020 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-35518634

RESUMEN

The unique structural merits of heterostructured nanomaterials including the electronic interaction, interfacial bonding and synergistic effects make them attractive for fabricating highly efficient optoelectronic devices. Herein, we report the synthesis of MnO2 nanorods and a rGO/MnO2 nano-heterostructure using low-cost hydrothermal and modified Hummers' methods, respectively. Detailed characterization and confirmation of the structural and morphological properties are done via X-ray Diffraction (XRD), Field Emission Scanning Electron Microscopy (FESEM) and Transmission Electron Microscopy (TEM). Compared to the isolated MnO2 nanorods, the rGO/MnO2 nano-heterostructure exhibits impressive field emission (FE) performance in terms of the low turn-on field of 1.4 V µm-1 for an emission current density of 10 µA cm-2 and a high current density of 600 µA cm-2 at a relatively very low applied electric field of 3.1 V µm-1. The isolated MnO2 nanorods display a high turn-on field of 7.1 for an emission current density of 10 µA cm-2 and a low current density of 221 µA cm-2 at an applied field of 8.1 V µm-1. Besides the superior FE characteristics of the rGO/MnO2 nano-heterostructure, the emission current remains quite stable over the continuous 2 h period of measurement. The improvement of the FE characteristics of the rGO/MnO2 nano-heterostructure can be ascribed to the nanometric features and the lower work function (6.01 and 6.12 eV for the rGO with 8% and 16% oxygen content) compared to the isolated α-MnO2(100) surface (Φ = 7.22 eV) as predicted from complementary first-principles electronic structure calculations based on density functional theory (DFT) methods. These results suggest that an appropriate coupling of rGO with MnO2 nanorods would have a synergistic effect of lowering the electronic work function, resulting in a beneficial tuning of the FE characteristics.

14.
RSC Adv ; 10(66): 39995-40004, 2020 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-35520837

RESUMEN

A comprehensive study regarding the effect of different solvent vapours on organolead halide perovskite properties is lacking. In the present work, the impact of exposing CH3NH3PbI3 films to the vapours of commonly available solvents has been studied. The interaction with perovskite has been correlated to solvent properties like dielectric constant, molecular dipole moment, Gutmann donor number and boiling point. Changes in the crystallinity, phase, optical absorption, morphologies at both nanometer and micrometer scale, functional groups and structures were studied using X-ray diffraction, UV-visible absorption, FE-SEM, FTIR and Raman spectroscopies. Among the aprotic solvents DMSO and DMF vapours deteriorate the crystallinity, phase, and optical, morphological and structural properties of the perovskite films in a very short time, but due to the difference in solvent property values acetone affects the perovskite properties differently. Polar protic 2-propanol and water vapours moderately affect the perovskite properties. However 2-propanol can solvate the organic cation CH3NH3 + more efficiently as compared to water and a considerable difference was found in the film properties especially the morphology at the nanoscale. Nonpolar chlorobenzene vapour minutely affects the perovskite morphology but toluene was found to enhance perovskite crystallinity. Solvent properties can be effectively used to interpret the coordination ability of a solvent. The present study can be immensely useful in understanding the effects of different solvent vapours and also their use for post-deposition processing (like solvent vapour annealing) to improve their properties.

15.
Materials (Basel) ; 12(24)2019 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-31817306

RESUMEN

We report a phase-pure kesterite Cu2ZnSnS4 (CZTS) thin films, synthesized using radio frequency (RF) sputtering followed by low-temperature H2S annealing and confirmed by XRD, Raman spectroscopy and XPS measurements. Subsequently, the band offsets at the interface of the CZTS/CdS heterojunction were systematically investigated by combining experiments and first-principles density functional theory (DFT) calculations, which provide atomic-level insights into the nature of atomic ordering and stability of the CZTS/CdS interface. A staggered type II band alignment between the valence and conduction bands at the CZTS/CdS interface was determined from Cyclic Voltammetry (CV) measurements and the DFT calculations. The conduction and valence band offsets were estimated at 0.10 and 1.21 eV, respectively, from CV measurements and 0.28 and 1.15 from DFT prediction. Based on the small conduction band offset and the predicted higher positions of the VBmax and CBmin for CZTS than CdS, it is suggested photogenerated charge carriers will be efficient separated across the interface, where electrons will flow from CZTS to the CdS and and vice versa for photo-generated valence holes. Our results help to explain the separation of photo-excited charge carriers across the CZTS/CdS interface and it should open new avenues for developing more efficient CZTS-based solar cells.

16.
J Phys Condens Matter ; 31(44): 445902, 2019 Nov 06.
Artículo en Inglés | MEDLINE | ID: mdl-31389343

RESUMEN

The recent development of halide double perovskites A2B'B"X6 with favorable band gaps have provided a new search direction for stable Pb-free perovskite solar cells. Here, we propose a new lead free double perovskite Cs2TlBiI6 as a potential candidate for perovskite solar cell absorber. We probe the structural, electronic and optical properties of this material through density functional theory calculations. Our calculations on this material show that Cs2TlBiI6 adopt cubic double perovskite structure with space group Fm-3m. Using PBE exchange-correlation functional we obtain direct band gap of about 1.37 eV at the centre of Brillouin zone. The direct band gap and strong optical absorption of this material in the visible energy range of solar spectrum implies that Cs2TlBiI6 can be a potential candidate for perovskite based solar cell. Our fundamental calculations on this material would open up further possibility of experimental studies on TlBi based perovskite.

17.
J Nanosci Nanotechnol ; 18(5): 3441-3447, 2018 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-29442850

RESUMEN

SnS nanostructured materials have attracted enormous interest due to their important properties and potential application in low cost solar energy conversion systems and optical devices. From the perspective of SnS based device fabrication, we offer single-stroke in-situ technique for the generation of Sn based sulphide and oxide nanostructures inside the polymer network via polymer-inorganic solid state reaction route. In this method, polyphenylene sulphide (PPS)-an engineering thermoplastic-acts as chalcogen source as well as stabilizing matrix for the resultant nano products. Typical solid state reaction was accomplished by simply heating the physical admixtures of the tin salts (viz. tin acetate/tin chloride) with PPS at the crystalline melting temperature (285 °C) of PPS in inert atmosphere. The synthesized products were characterized by using various physicochemical characterization techniques. The prima facie observations suggest the concurrent formation of nanocrystalline SnS with extraneous oxide phase. The TEM analysis revealed formation of nanosized particles of assorted morphological features with polydispersity confined to 5 to 50 nm. However, agglomerated particles of nano to submicron size were also observed. The humidity sensing characterization of these nanocomposites was also performed. The resistivity response with the level of humidity (20 to 85% RH) was compared for these nanocomposites. The linear response was obtained for both the products. Nevertheless, the nanocomposite product obtained from acetate precursor showed higher sensitivity towards the humidity than that of one prepared from chloride precursor.

18.
Nanoscale ; 8(5): 3008-18, 2016 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-26782944

RESUMEN

We investigate the growth mechanism and temperature dependent Raman spectroscopy of chemical vapor deposited large area monolayer of MoS2, MoSe2, WS2 and WSe2 nanosheets up to 70 µm in lateral size. Further, our temperature dependent Raman spectroscopy investigation shows that softening of Raman modes as temperature increases from 80 K to 593 K is due to the negative temperature coefficient and anharmonicity. The temperature dependent softening modes of chemical vapor deposited monolayers of all TMDCs were explained on the basis of a double resonance phonon process which is more active in an atomically thin sample. This process can also be fundamentally pertinent in other emerging two-dimensional layered and heterostructured materials.

19.
ACS Appl Mater Interfaces ; 8(5): 3359-65, 2016 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-26771049

RESUMEN

In the present investigation, we report a one-step synthesis method of wafer-scale highly crystalline tungsten disulfide (WS2) nanoparticle thin film by using a modified hot wire chemical vapor deposition (HW-CVD) technique. The average size of WS2 nanoparticle is found to be 25-40 nm over an entire 4 in. wafer of quartz substrate. The low-angle XRD data of WS2 nanoparticle shows the highly crystalline nature of sample along with orientation (002) direction. Furthermore, Raman spectroscopy shows two prominent phonon vibration modes of E(1)2g and A1g at ∼356 and ∼420 cm(-1), respectively, indicating high purity of material. The TEM analysis shows good crystalline quality of sample. The synthesized WS2 nanoparticle thin film based device shows good response to humidity and good photosensitivity along with good long-term stability of the device. It was found that the resistance of the films decreases with increasing relative humidity (RH). The maximum humidity sensitivity of 469% along with response time of ∼12 s and recovery time of ∼13 s were observed for the WS2 thin film humidity sensor device. In the case of photodetection, the response time of ∼51 s and recovery time of ∼88 s were observed with sensitivity ∼137% under white light illumination. Our results open up several avenues to grow other transition metal dichalcogenide nanoparticle thin film for large-area nanoelectronics as well as industrial applications.

20.
ACS Appl Mater Interfaces ; 7(43): 24185-90, 2015 Nov 04.
Artículo en Inglés | MEDLINE | ID: mdl-26467202

RESUMEN

Titanium trisulfide (TiS3) has recently attracted the interest of the 2D community because it presents a direct bandgap of ∼1.0 eV, shows remarkable photoresponse, and has a predicted carrier mobility up to 10000 cm(2) V(-1) s(-1). However, a study of the vibrational properties of TiS3, relevant to understanding the electron-phonon interaction that can be the main mechanism limiting the charge carrier mobility, is still lacking. In this work, we take the first steps to study the vibrational properties of TiS3 through temperature-dependent Raman spectroscopy measurements of TiS3 nanoribbons and nanosheets. Our investigation shows that all the Raman modes linearly soften (red shift) as the temperature increases from 88 to 570 K due to anharmonic vibrations of the lattice, which also includes contributions from the lattice thermal expansion. This softening with the temperature of the TiS3 modes is more pronounced than that observed in other 2D semiconductors, such as MoS2, MoSe2, WSe2, and black phosphorus (BP). This marked temperature dependence of the Raman spectra could be exploited to determine the temperature of TiS3 nanodevices by using Raman spectroscopy as a noninvasive and local thermal probe. Interestingly, the TiS3 nanosheets show a stronger temperature dependence of the Raman modes than the nanoribbons, which we attribute to lower interlayer coupling in the nanosheets.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...