Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 13(1): 5637, 2022 09 26.
Artículo en Inglés | MEDLINE | ID: mdl-36163190

RESUMEN

Idiopathic pulmonary fibrosis (IPF) is a fatal disease with limited treatment options. In this study, we focus on the properties of airway basal cells (ABC) obtained from patients with IPF (IPF-ABC). Single cell RNA sequencing (scRNAseq) of bronchial brushes revealed extensive reprogramming of IPF-ABC towards a KRT17high PTENlow dedifferentiated cell type. In the 3D organoid model, compared to ABC obtained from healthy volunteers, IPF-ABC give rise to more bronchospheres, de novo bronchial structures resembling lung developmental processes, induce fibroblast proliferation and extracellular matrix deposition in co-culture. Intratracheal application of IPF-ABC into minimally injured lungs of Rag2-/- or NRG mice causes severe fibrosis, remodeling of the alveolar compartment, and formation of honeycomb cyst-like structures. Connectivity MAP analysis of scRNAseq of bronchial brushings suggested that gene expression changes in IPF-ABC can be reversed by SRC inhibition. After demonstrating enhanced SRC expression and activity in these cells, and in IPF lungs, we tested the effects of saracatinib, a potent SRC inhibitor previously studied in humans. We demonstrate that saracatinib modified in-vitro and in-vivo the profibrotic changes observed in our 3D culture system and novel mouse xenograft model.


Asunto(s)
Fibrosis Pulmonar Idiopática , Animales , Modelos Animales de Enfermedad , Fibroblastos/metabolismo , Fibrosis , Humanos , Fibrosis Pulmonar Idiopática/patología , Pulmón/patología , Ratones , Fenotipo
2.
J Med Chem ; 64(14): 9960-9988, 2021 07 22.
Artículo en Inglés | MEDLINE | ID: mdl-34251197

RESUMEN

Idiopathic pulmonary fibrosis (IPF) is an interstitial lung disease characterized by a progressive-fibrosing phenotype. IPF has been associated with aberrant HDAC activities confirmed by our immunohistochemistry studies on HDAC6 overexpression in IPF lung tissues. We herein developed a series of novel hHDAC6 inhibitors, having low inhibitory potency over hHDAC1 and hHDAC8, as potential pharmacological tools for IPF treatment. Their inhibitory potency was combined with low in vitro and in vivo toxicity. Structural analysis of 6h and structure-activity relationship studies contributed to the optimization of the binding mode of the new molecules. The best-performing analogues were tested for their efficacy in inhibiting fibrotic sphere formation and cell viability, proving their capability in reverting the IPF phenotype. The efficacy of analogue 6h was also determined in a validated human lung model of TGF-ß1-dependent fibrogenesis. The results highlighted in this manuscript may pave the way for the identification of first-in-class molecules for the treatment of IPF.


Asunto(s)
Diseño de Fármacos , Histona Desacetilasa 6/antagonistas & inhibidores , Inhibidores de Histona Desacetilasas/farmacología , Fibrosis Pulmonar Idiopática/tratamiento farmacológico , Relación Dosis-Respuesta a Droga , Histona Desacetilasa 6/metabolismo , Inhibidores de Histona Desacetilasas/síntesis química , Inhibidores de Histona Desacetilasas/química , Humanos , Fibrosis Pulmonar Idiopática/metabolismo , Fibrosis Pulmonar Idiopática/patología , Modelos Moleculares , Estructura Molecular , Relación Estructura-Actividad
3.
Chest ; 159(3): 1094-1106, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-32822674

RESUMEN

BACKGROUND: Idiopathic pulmonary fibrosis (IPF) is a progressive disease for which two antifibrotic drugs recently were approved. However, an unmet need exists to predict responses to antifibrotic treatment, such as pirfenidone. Recent data suggest that upregulated expression of CXCR4 is indicative of outcomes in IPF. RESEARCH QUESTION: Can quantitative, molecular imaging of pulmonary CXCR4 expression as a biomarker for disease activity predict response to the targeted treatment pirfenidone and prognosis in patients with IPF? STUDY DESIGN AND METHODS: CXCR4 expression was analyzed by immunohistochemistry examination of lung tissues and reverse-transcriptase polymerase chain reaction analysis of BAL. PET-CT scanning with the specific CXCR4 ligand 68Ga-pentixafor was performed in 28 IPF patients and compared with baseline clinical characteristics. In 16 patients, a follow-up scan was obtained 6 to 12 weeks after initiation of treatment with pirfenidone. Patients were followed up in our outpatient clinic for ≥ 12 months. RESULTS: Immunohistochemistry analysis showed high CXCR4 staining of epithelial cells and macrophages in areas with vast fibrotic remodeling. Targeted PET scanning revealed CXCR4 upregulation in fibrotic areas of the lungs, particularly in zones with subpleural honeycombing. Baseline CXCR4 signal demonstrated a significant correlation with Gender Age Physiology stage (r = 0.44; P = .02) and with high-resolution CT scan score (r = 0.38; P = .04). Early changes in CXCR4 signal after initiation of pirfenidone treatment correlated with the long-term course of FVC after 12 months (r = -0.75; P = .0008). Moreover, patients with a high pulmonary CXCR4 signal on follow-up PET scan after 6 weeks into treatment demonstrated a statistically significant worse outcome at 12 months (P = .002). In multiple regression analysis, pulmonary CXCR4 signal on follow-up PET scan emerged as the only independent predictor of long-term outcome (P = .0226). INTERPRETATION: CXCR4-targeted PET imaging identified disease activity and predicted outcome of IPF patients treated with pirfenidone. It may serve as a future biomarker for personalized guidance of antifibrotic treatment.


Asunto(s)
Fibrosis Pulmonar Idiopática , Pulmón , Tomografía Computarizada por Tomografía de Emisión de Positrones/métodos , Piridonas , Receptores CXCR4/inmunología , Anciano , Antiinflamatorios no Esteroideos/administración & dosificación , Antiinflamatorios no Esteroideos/efectos adversos , Biomarcadores Farmacológicos/análisis , Progresión de la Enfermedad , Femenino , Humanos , Fibrosis Pulmonar Idiopática/diagnóstico , Fibrosis Pulmonar Idiopática/inmunología , Inmunohistoquímica , Pulmón/inmunología , Pulmón/patología , Masculino , Gravedad del Paciente , Pronóstico , Piridonas/administración & dosificación , Piridonas/efectos adversos , Regulación hacia Arriba
4.
Am J Respir Crit Care Med ; 199(5): 622-630, 2019 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-30141961

RESUMEN

RATIONALE: Idiopathic pulmonary fibrosis (IPF) is a fatal disease with a variable and unpredictable course. OBJECTIVES: To determine whether BAL cell gene expression is predictive of survival in IPF. METHODS: This retrospective study analyzed the BAL transcriptome of three independent IPF cohorts: Freiburg (Germany), Siena (Italy), and Leuven (Belgium) including 212 patients. BAL cells from 20 healthy volunteers, 26 patients with sarcoidosis stage III and IV, and 29 patients with chronic obstructive pulmonary disease were used as control subjects. Survival analysis was performed by Cox models and component-wise boosting. Presence of airway basal cells was tested by immunohistochemistry and flow cytometry. MEASUREMENTS AND MAIN RESULTS: A total of 1,582 genes were predictive of mortality in the IPF derivation cohort in univariate analyses adjusted for age and sex at false discovery rate less than 0.05. A nine-gene signature, derived from the discovery cohort (Freiburg), performed well in both replication cohorts, Siena (P < 0.0032) and Leuven (P = 0.0033). nCounter expression analysis confirmed the array results (P < 0.0001). The genes associated with mortality in BAL cells were significantly enriched for genes expressed in airway basal cells. Further analyses by gene expression, flow cytometry, and immunohistochemistry showed an increase in airway basal cells in BAL and tissues of IPF compared with control subjects, but not in chronic obstructive pulmonary disease or sarcoidosis. CONCLUSIONS: Our results identify and validate a BAL signature that predicts mortality in IPF and improves the accuracy of outcome prediction based on clinical parameters. The BAL signature associated with mortality unmasks a potential role for airway basal cells in IPF.


Asunto(s)
Líquido del Lavado Bronquioalveolar/citología , Fibrosis Pulmonar Idiopática/metabolismo , Mucosa Respiratoria/metabolismo , Anciano , Femenino , Expresión Génica , Perfilación de la Expresión Génica , Humanos , Fibrosis Pulmonar Idiopática/mortalidad , Masculino , Análisis de Secuencia por Matrices de Oligonucleótidos , Valor Predictivo de las Pruebas , Modelos de Riesgos Proporcionales , Estudios Retrospectivos , Análisis de Supervivencia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...