RESUMEN
PURPOSE: The receptor tyrosine kinase-like orphan receptor 1 (ROR1) is expressed in hematopoietic and epithelial cancers but has limited expression on normal adult tissues. This phase 1 study evaluated the safety of targeting ROR1 with autologous T-lymphocytes engineered to express a ROR1 chimeric antigen receptor (CAR). Secondary objectives evaluated persistence, trafficking, and antitumor activity of CAR T cells. PATIENTS & METHODS: Twenty-one patients with ROR1+ tumors received CAR T cells at one of four dose levels (DL): 3.3x105/1x106/3.3x106/1x107 cells/kg, administered after lymphodepletion with Cyclophosphamide/Fludarabine (Cy/Flu) or Oxaliplatin/Cyclophosphamide (Ox/Cy). Cohort A included patients with chronic lymphocytic leukemia (CLL, n=3); cohort B included patients with triple-negative breast cancer (TNBC, n=10) or non-small-cell lung cancer (NSCLC, n=8). A second infusion was administered to one patient in cohort A with residual CLL in the marrow and three patients in cohort B with stable disease after first infusion. RESULTS: Treatment was well tolerated apart from one dose limiting toxicity at DL4 in a patient with advanced NSCLC. Two of the three (67%) CLL patients showed robust CAR T expansion and a rapid antitumor response. In patients with NSCLC and TNBC, CAR T cells expanded to variable levels, infiltrated tumor poorly, and one of eighteen patients (5.5%) achieved partial response by RECIST 1.1. CONCLUSION: ROR1 CAR T cells were well tolerated in most patients. Antitumor activity was observed in CLL but was limited in TNBC and NSCLC. Immunogenicity of the CAR and lack of sustained tumor infiltration were identified as limitations.
RESUMEN
As adoptive cellular therapies become more commonplace in cancer care, there is a growing need to monitor site-specific localization of engineered cells-such as chimeric antigen receptor T (CAR-T) cells and T-cell receptor T (TCR-T) cells-in patients' tissues to understand treatment effectiveness as well as associated adverse events. Manufacturing CAR-T and TCR-T cells involves transduction with viral vectors commonly containing the WPRE gene sequence to enhance gene expression, providing a viable assay target unique to these engineered cells. Quantitative PCR (qPCR) is currently used clinically in fresh patient tissue samples and blood with target sequences specific to each immunotherapy product. Herein, we developed a WPRE-targeted qPCR assay that is broadly applicable for detection of engineered cell products in both fresh and archival formalin-fixed paraffin embedded (FFPE) tissues. Using both traditional PCR and SYBR Green PCR protocols, we demonstrate the use of this WPRE-targeted assay to successfully detect two CAR-T cell and two TCR-T cell products in FFPE tissue. Standard curve analysis reported a reproducible limit of detection at 100 WPRE copies per 20µL PCR reaction. This novel and inexpensive technique could provide better understanding of tissue abundance of engineered therapeutic T cells in both tumor and second-site toxicity tissues and provide quantitative assessment of immune effector cell trafficking in archival tissue.
Asunto(s)
Formaldehído , Virus de la Hepatitis B de la Marmota , Receptores de Antígenos de Linfocitos T , Humanos , Virus de la Hepatitis B de la Marmota/genética , Receptores de Antígenos de Linfocitos T/genética , Receptores de Antígenos de Linfocitos T/metabolismo , Receptores de Antígenos de Linfocitos T/inmunología , Receptores Quiméricos de Antígenos/genética , Receptores Quiméricos de Antígenos/metabolismo , Receptores Quiméricos de Antígenos/inmunología , Linfocitos T/inmunología , Linfocitos T/metabolismo , Fijación del Tejido/métodos , Inmunoterapia Adoptiva/métodos , Reacción en Cadena en Tiempo Real de la Polimerasa/métodosRESUMEN
The expression of a synthetic chimeric antigen receptor (CAR) to redirect antigen specificity of T cells is transforming the treatment of hematological malignancies and autoimmune diseases [1-7]. In cancer, durable efficacy is frequently limited by the escape of tumors that express low levels or lack the target antigen [8-12]. These clinical results emphasize the need for immune receptors that combine high sensitivity and multispecificity to improve outcomes. Current mono- and bispecific CARs do not faithfully recapitulate T cell receptor (TCR) function and require high antigen levels on tumor cells for recognition [13-17]. Here, we describe a novel synthetic chimeric TCR (ChTCR) that exhibits superior antigen sensitivity and is readily adapted for bispecific targeting. Bispecific ChTCRs mimic TCR structure, form classical immune synapses, and exhibit TCR-like proximal signaling. T cells expressing Bi-ChTCRs more effectively eliminated tumors with heterogeneous antigen expression in vivo compared to T cells expressing optimized bispecific CARs. The Bi-ChTCR architecture is resilient and can be designed to target multiple B cell lineage and multiple myeloma antigens. Our findings identify a broadly applicable approach for engineering T cells to target hematologic malignancies with heterogeneous antigen expression, thereby overcoming the most frequent mechanism of relapse after current CAR T therapies.
RESUMEN
BACKGROUND: The paucity of tumor-specific targets for chimeric antigen receptor (CAR) T-cell therapy of solid tumors necessitates careful preclinical evaluation of the therapeutic window for candidate antigens. Human epidermal growth factor receptor 2 (HER2) is an attractive candidate for CAR T-cell therapy in humans but has the potential for eliciting on-target off-tumor toxicity. We developed an immunocompetent tumor model of CAR T-cell therapy targeting murine HER2 (mHER2) and examined the effect of CAR affinity, T-cell dose, and lymphodepletion on safety and efficacy. METHODS: Antibodies specific for mHER2 were generated, screened for affinity and specificity, tested for immunohistochemical staining of HER2 on normal tissues, and used for HER2-targeted CAR design. CAR candidates were evaluated for T-cell surface expression and the ability to induce T-cell proliferation, cytokine production, and cytotoxicity when transduced T cells were co-cultured with mHER2+ tumor cells in vitro. Safety and efficacy of various HER2 CARs was evaluated in two tumor models and normal non-tumor-bearing mice. RESULTS: Mice express HER2 in the same epithelial tissues as humans, rendering these tissues vulnerable to recognition by systemically administered HER2 CAR T cells. CAR T cells designed with single-chain variable fragment (scFvs) that have high-affinity for HER2 infiltrated and caused toxicity to normal HER2-positive tissues but exhibited poor infiltration into tumors and antitumor activity. In contrast, CAR T cells designed with an scFv with low-affinity for HER2 infiltrated HER2-positive tumors and controlled tumor growth without toxicity. Toxicity mediated by high-affinity CAR T cells was independent of tumor burden and correlated with proliferation of CAR T cells post infusion. CONCLUSIONS: Our findings illustrate the disadvantage of high-affinity CARs for targets such as HER2 that are expressed on normal tissues. The use of low-affinity HER2 CARs can safely regress tumors identifying a potential path for therapy of solid tumors that exhibit high levels of HER2.
Asunto(s)
Inmunoterapia Adoptiva , Linfocitos T , Ratones , Humanos , Animales , Ensayos Antitumor por Modelo de Xenoinjerto , Línea Celular Tumoral , Ratones EndogámicosRESUMEN
The interaction of the tumor necrosis factor receptor (TNFR) family member CD27 on naive CD8+ T (Tn) cells with homotrimeric CD70 on antigen-presenting cells (APCs) is necessary for T cell memory fate determination. Here, we examined CD27 signaling during Tn cell activation and differentiation. In conjunction with T cell receptor (TCR) stimulation, ligation of CD27 by a synthetic trimeric CD70 ligand triggered CD27 internalization and degradation, suggesting active regulation of this signaling axis. Internalized CD27 recruited the signaling adaptor TRAF2 and the phosphatase SHP-1, thereby modulating TCR and CD28 signals. CD27-mediated modulation of TCR signals promoted transcription factor circuits that induced memory rather than effector associated gene programs, which are induced by CD28 costimulation. CD27-costimulated chimeric antigen receptor (CAR)-engineered T cells exhibited improved tumor control compared with CD28-costimulated CAR-T cells. Thus, CD27 signaling during Tn cell activation promotes memory properties with relevance to T cell immunotherapy.
Asunto(s)
Antígenos CD28 , Redes Reguladoras de Genes , Factor 2 Asociado a Receptor de TNF/genética , Factor 2 Asociado a Receptor de TNF/metabolismo , Antígenos CD28/metabolismo , Transducción de Señal , Activación de Linfocitos , Receptores de Antígenos de Linfocitos T/metabolismo , Miembro 7 de la Superfamilia de Receptores de Factores de Necrosis Tumoral/genética , Miembro 7 de la Superfamilia de Receptores de Factores de Necrosis Tumoral/metabolismo , Ligando CD27/genética , Ligando CD27/metabolismo , Linfocitos T CD8-positivosRESUMEN
Metastatic renal cell carcinoma (RCC) remains an incurable disease for most patients highlighting an urgent need for new treatments. However, the preclinical investigation of new therapies is limited by traditional two-dimensional (2D) cultures which do not recapitulate the properties of tumor cells within a collagen extracellular matrix (ECM), while human tumor xenografts are time-consuming, expensive and lack adaptive immune cells. We report a rapid and economical human microphysiological system ("RCC-on-a-chip") to investigate therapies targeting RCC spheroids in a 3D collagen ECM. We first demonstrate that culture of RCC cell lines A498 and RCC4 in a 3D collagen ECM more faithfully reproduces the gene expression program of primary RCC tumors compared to 2D culture. We next used bortezomib as a cytotoxin to develop automated quantification of dose-dependent tumor spheroid killing. We observed that viable RCC spheroids exhibited collective migration within the ECM and demonstrated that our 3D system can be used to identify compounds that inhibit spheroid collective migration without inducing cell death. Finally, we demonstrate the RCC-on-a-chip as a platform to model the trafficking of tumor-reactive T cells into the ECM and observed antigen-specific A498 spheroid killing by engineered human CD8+ T cells expressing an ROR1-specific chimeric antigen receptor. In summary, the phenotypic differences between the 3D versus 2D environments, rapid imaging-based readout, and the ability to carefully study the impact of individual variables with quantitative rigor will encourage adoption of the RCC-on-a-chip system for testing a wide range of emerging therapies for RCC.
Asunto(s)
Carcinoma de Células Renales , Neoplasias Renales , Humanos , Carcinoma de Células Renales/tratamiento farmacológico , Carcinoma de Células Renales/genética , Carcinoma de Células Renales/metabolismo , Neoplasias Renales/tratamiento farmacológico , Neoplasias Renales/genética , Neoplasias Renales/metabolismo , Linfocitos T CD8-positivos/metabolismo , Colágeno , Dispositivos Laboratorio en un Chip , Esferoides Celulares/metabolismoRESUMEN
Cell stemness is characterized by quiescence, pluripotency, and long-term self-renewal capacity. Therapy-resistant leukemic stem cells (LSCs) are the primary cause of relapse in patients with chronic and acute myeloid leukemia (CML and AML). However, the same signaling pathways frequently support stemness in both LSCs and normal hematopoietic stem cells (HSCs), making LSCs difficult to therapeutically target. In cell lines and patient samples, we found that interleukin-33 (IL-33) signaling promoted stemness only in leukemia cells in a subtype-specific manner. The IL-33 receptor ST2 was abundant on the surfaces of CD34+ BCR/ABL1 CML and CD34+ AML cells harboring AML1/ETO and DEK/NUP214 translocations or deletion of chromosome 9q [del(9q)]. The cell surface abundance of ST2, which was lower or absent on other leukemia subtypes and HSCs, correlated with stemness, activated Wnt signaling, and repressed Notch signaling. IL-33-ST2 signaling promoted the maintenance and expansion of AML1/ETO-, DEK/NUP214-, and BCR/ABL1-positive LSCs in culture and in mice by activating Wnt, MAPK, and NF-κB signaling. Wnt signaling and its inhibition of the Notch pathway up-regulated the expression of the gene encoding ST2, thus forming a cell-autonomous loop. IL-33-ST2 signaling promoted the resistance of CML cells to the tyrosine kinase inhibitor (TKI) nilotinib and of AML cells to standard chemotherapy. Thus, inhibiting IL-33-ST2 signaling may target LSCs to overcome resistance to chemotherapy or TKIs in these subtypes of leukemia.
Asunto(s)
Interleucina-33 , Leucemia Mieloide , Animales , Ratones , Proteína 1 Similar al Receptor de Interleucina-1 , Interleucina-33/genética , FN-kappa B , Vía de Señalización WntRESUMEN
Adoptive therapy using chimeric antigen receptor-modified T cells (CAR-T cells) is effective in hematologic but not epithelial malignancies, which cause the greatest mortality. In breast and lung cancer patients, CAR-T cells targeting the tumor-associated antigen receptor tyrosine kinase-like orphan receptor 1 (ROR1) infiltrate tumors poorly and become dysfunctional. To test strategies for enhancing efficacy, we adapted the KrasLSL-G12D/+;p53f/f autochthonous model of lung adenocarcinoma to express the CAR target ROR1. Murine ROR1 CAR-T cells transferred after lymphodepletion with cyclophosphamide (Cy) transiently control tumor growth but infiltrate tumors poorly and lose function, similar to what is seen in patients. Adding oxaliplatin (Ox) to the lymphodepletion regimen activates tumor macrophages to express T-cell-recruiting chemokines, resulting in improved CAR-T cell infiltration, remodeling of the tumor microenvironment, and increased tumor sensitivity to anti-PD-L1. Combination therapy with Ox/Cy and anti-PD-L1 synergistically improves CAR-T cell-mediated tumor control and survival, providing a strategy to improve CAR-T cell efficacy in the clinic.
Asunto(s)
Inhibidores de Puntos de Control Inmunológico/inmunología , Neoplasias Pulmonares/inmunología , Receptores de Antígenos de Linfocitos T/inmunología , Receptores Quiméricos de Antígenos/inmunología , Linfocitos T/inmunología , Animales , Antígenos de Neoplasias/inmunología , Línea Celular , Línea Celular Tumoral , Células HEK293 , Humanos , Inmunoterapia Adoptiva/métodos , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Receptores Huérfanos Similares al Receptor Tirosina Quinasa/inmunología , Microambiente Tumoral/inmunologíaRESUMEN
Co-stimulatory signals, cytokines and transcription factors regulate the balance between effector and memory cell differentiation during T cell activation. Here, we analyse the role of the TRAF2-/NCK-interacting kinase (TNIK), a signaling molecule downstream of the tumor necrosis factor superfamily receptors such as CD27, in the regulation of CD8+ T cell fate during acute infection with lymphocytic choriomeningitis virus. Priming of CD8+ T cells induces a TNIK-dependent nuclear translocation of ß-catenin with consecutive Wnt pathway activation. TNIK-deficiency during T cell activation results in enhanced differentiation towards effector cells, glycolysis and apoptosis. TNIK signaling enriches for memory precursors by favouring symmetric over asymmetric cell division. This enlarges the pool of memory CD8+ T cells and increases their capacity to expand after re-infection in serial re-transplantation experiments. These findings reveal that TNIK is an important regulator of effector and memory T cell differentiation and induces a population of stem cell-like memory T cells.
Asunto(s)
Linfocitos T CD8-positivos/inmunología , Coriomeningitis Linfocítica/inmunología , Proteínas Serina-Treonina Quinasas/inmunología , Animales , Apoptosis , Linfocitos T CD8-positivos/citología , Diferenciación Celular , Humanos , Memoria Inmunológica , Activación de Linfocitos , Coriomeningitis Linfocítica/genética , Coriomeningitis Linfocítica/fisiopatología , Coriomeningitis Linfocítica/virología , Virus de la Coriomeningitis Linfocítica/fisiología , Ratones , Ratones Noqueados , Proteínas Serina-Treonina Quinasas/genética , Transducción de Señal , Vía de Señalización WntRESUMEN
Protein engineering has enabled the design of molecular scaffolds that display a wide variety of sizes, shapes, symmetries and subunit compositions. Symmetric protein-based nanoparticles that display multiple protein domains can exhibit enhanced functional properties due to increased avidity and improved solution behavior and stability. Here we describe the creation and characterization of a computationally designed circular tandem repeat protein (cTRP) composed of 24 identical repeated motifs, which can display a variety of functional protein domains (cargo) at defined positions around its periphery. We demonstrate that cTRP nanoparticles can self-assemble from smaller individual subunits, can be produced from prokaryotic and human expression platforms, can employ a variety of cargo attachment strategies and can be used for applications (such as T-cell culture and expansion) requiring high-avidity molecular interactions on the cell surface.