Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
BMC Bioinformatics ; 25(1): 138, 2024 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-38553675

RESUMEN

Even though high-throughput transcriptome sequencing is routinely performed in many laboratories, computational analysis of such data remains a cumbersome process often executed manually, hence error-prone and lacking reproducibility. For corresponding data processing, we introduce Curare, an easy-to-use yet versatile workflow builder for analyzing high-throughput RNA-Seq data focusing on differential gene expression experiments. Data analysis with Curare is customizable and subdivided into preprocessing, quality control, mapping, and downstream analysis stages, providing multiple options for each step while ensuring the reproducibility of the workflow. For a fast and straightforward exploration and visualization of differential gene expression results, we provide the gene expression visualizer software GenExVis. GenExVis can create various charts and tables from simple gene expression tables and DESeq2 results without the requirement to upload data or install software packages. In combination, Curare and GenExVis provide a comprehensive software environment that supports the entire data analysis process, from the initial handling of raw RNA-Seq data to the final DGE analyses and result visualizations, thereby significantly easing data processing and subsequent interpretation.


Asunto(s)
Curare , RNA-Seq , Reproducibilidad de los Resultados , Análisis de Secuencia de ARN/métodos , Transcriptoma , Programas Informáticos , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Perfilación de la Expresión Génica/métodos
2.
Nucleic Acids Res ; 49(2): 986-1005, 2021 01 25.
Artículo en Inglés | MEDLINE | ID: mdl-33398323

RESUMEN

Extracytoplasmic function σ factors (ECFs) represent one of the major bacterial signal transduction mechanisms in terms of abundance, diversity and importance, particularly in mediating stress responses. Here, we performed a comprehensive phylogenetic analysis of this protein family by scrutinizing all proteins in the NCBI database. As a result, we identified an average of ∼10 ECFs per bacterial genome and 157 phylogenetic ECF groups that feature a conserved genetic neighborhood and a similar regulation mechanism. Our analysis expands previous classification efforts ∼50-fold, enriches many original ECF groups with previously unclassified proteins and identifies 22 entirely new ECF groups. The ECF groups are hierarchically related to each other and are further composed of subgroups with closely related sequences. This two-tiered classification allows for the accurate prediction of common promoter motifs and the inference of putative regulatory mechanisms across subgroups composing an ECF group. This comprehensive, high-resolution description of the phylogenetic distribution of the ECF family, together with the massive expansion of classified ECF sequences and an openly accessible data repository called 'ECF Hub' (https://www.computational.bio.uni-giessen.de/ecfhub), will serve as a powerful hypothesis-generator to guide future research in the field.


Asunto(s)
Proteínas Bacterianas/química , Familia de Multigenes , Factor sigma/clasificación , Secuencia de Aminoácidos , Proteínas Bacterianas/genética , Secuencia de Consenso , ARN Polimerasas Dirigidas por ADN/química , ARN Polimerasas Dirigidas por ADN/metabolismo , Regulación Bacteriana de la Expresión Génica , Filogenia , Alineación de Secuencia , Factor sigma/genética , Transducción de Señal , Especificidad por Sustrato , Terminología como Asunto
3.
Sci Rep ; 10(1): 7296, 2020 04 29.
Artículo en Inglés | MEDLINE | ID: mdl-32350402

RESUMEN

Projected climate change and rainfall variability will affect soil microbial communities, biogeochemical cycling and agriculture. Nitrogen (N) is the most limiting nutrient in agroecosystems and its cycling and availability is highly dependent on microbial driven processes. In agroecosystems, hydrolysis of organic nitrogen (N) is an important step in controlling soil N availability. We analyzed the effect of management (ecological intensive vs. conventional intensive) on N-cycling processes and involved microbial communities under climate change-induced rain regimes. Terrestrial model ecosystems originating from agroecosystems across Europe were subjected to four different rain regimes for 263 days. Using structural equation modelling we identified direct impacts of rain regimes on N-cycling processes, whereas N-related microbial communities were more resistant. In addition to rain regimes, management indirectly affected N-cycling processes via modifications of N-related microbial community composition. Ecological intensive management promoted a beneficial N-related microbial community composition involved in N-cycling processes under climate change-induced rain regimes. Exploratory analyses identified phosphorus-associated litter properties as possible drivers for the observed management effects on N-related microbial community composition. This work provides novel insights into mechanisms controlling agro-ecosystem functioning under climate change.


Asunto(s)
Cambio Climático , Ecosistema , Microbiota/fisiología , Lluvia , Microbiología del Suelo , Suelo , Agricultura , Europa (Continente) , Nitrógeno/metabolismo
4.
Genes (Basel) ; 10(6)2019 06 03.
Artículo en Inglés | MEDLINE | ID: mdl-31163637

RESUMEN

To follow the hypothesis that agricultural management practices affect structure and function of the soil microbiome regarding soil health and plant-beneficial traits, high-throughput (HT) metagenome analyses were performed on Chernozem soil samples from a long-term field experiment designated LTE-1 carried out at Bernburg-Strenzfeld (Saxony-Anhalt, Germany). Metagenomic DNA was extracted from soil samples representing the following treatments: (i) plough tillage with standard nitrogen fertilization and use of fungicides and growth regulators, (ii) plough tillage with reduced nitrogen fertilization (50%), (iii) cultivator tillage with standard nitrogen fertilization and use of fungicides and growth regulators, and (iv) cultivator tillage with reduced nitrogen fertilization (50%). Bulk soil (BS), as well as root-affected soil (RS), were considered for all treatments in replicates. HT-sequencing of metagenomic DNA yielded approx. 100 Giga bases (Gb) of sequence information. Taxonomic profiling of soil communities revealed the presence of 70 phyla, whereby Proteobacteria, Actinobacteria, Bacteroidetes, Planctomycetes, Acidobacteria, Thaumarchaeota, Firmicutes, Verrucomicrobia and Chloroflexi feature abundances of more than 1%. Functional microbiome profiling uncovered, i.a., numerous potential plant-beneficial, plant-growth-promoting and biocontrol traits predicted to be involved in nutrient provision, phytohormone synthesis, antagonism against pathogens and signal molecule synthesis relevant in microbe-plant interaction. Neither taxonomic nor functional microbiome profiling based on single-read analyses revealed pronounced differences regarding the farming practices applied. Soil metagenome sequences were assembled and taxonomically binned. The ten most reliable and abundant Metagenomically Assembled Genomes (MAGs) were taxonomically classified and metabolically reconstructed. Importance of the phylum Thaumarchaeota for the analyzed microbiome is corroborated by the fact that the four corresponding MAGs were predicted to oxidize ammonia (nitrification), thus contributing to the cycling of nitrogen, and in addition are most probably able to fix carbon dioxide. Moreover, Thaumarchaeota and several bacterial MAGs also possess genes with predicted functions in plant-growth-promotion. Abundances of certain MAGs (species resolution level) responded to the tillage practice, whereas the factors compartment (BS vs. RS) and nitrogen fertilization only marginally shaped MAG abundance profiles. Hence, soil management regimes promoting plant-beneficial microbiome members are very likely advantageous for the respective agrosystem, its health and carbon sequestration and accordingly may enhance plant productivity. Since Chernozem soils are highly fertile, corresponding microbiome data represent a valuable reference resource for agronomy in general.


Asunto(s)
Agricultura , Bacterias/genética , Metagenoma/genética , Microbiología del Suelo , Actinobacteria/clasificación , Actinobacteria/genética , Amoníaco/metabolismo , Archaea/clasificación , Archaea/genética , Bacterias/clasificación , Bacteroidetes/clasificación , Bacteroidetes/genética , Alemania , Humanos , Filogenia , Proteobacteria/clasificación , Proteobacteria/genética
5.
Biotechnol Biofuels ; 11: 167, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29951113

RESUMEN

BACKGROUND: Previous studies on the Miscellaneous Crenarchaeota Group, recently assigned to the novel archaeal phylum Bathyarchaeota, reported on the dominance of these Archaea within the anaerobic carbohydrate cycle performed by the deep marine biosphere. For the first time, members of this phylum were identified also in mesophilic and thermophilic biogas-forming biofilms and characterized in detail. RESULTS: Metagenome shotgun libraries of biofilm microbiomes were sequenced using the Illumina MiSeq system. Taxonomic classification revealed that between 0.1 and 2% of all classified sequences were assigned to Bathyarchaeota. Individual metagenome assemblies followed by genome binning resulted in the reconstruction of five metagenome-assembled genomes (MAGs) of Bathyarchaeota. MAGs were estimated to be 65-92% complete, ranging in their genome sizes from 1.1 to 2.0 Mb. Phylogenetic classification based on core gene sets confirmed their placement within the phylum Bathyarchaeota clustering as a separate group diverging from most of the recently known Bathyarchaeota clusters. The genetic repertoire of these MAGs indicated an energy metabolism based on carbohydrate and amino acid fermentation featuring the potential for extracellular hydrolysis of cellulose, cellobiose as well as proteins. In addition, corresponding transporter systems were identified. Furthermore, genes encoding enzymes for the utilization of carbon monoxide and/or carbon dioxide via the Wood-Ljungdahl pathway were detected. CONCLUSIONS: For the members of Bathyarchaeota detected in the biofilm microbiomes, a hydrolytic lifestyle is proposed. This is the first study indicating that Bathyarchaeota members contribute presumably to hydrolysis and subsequent fermentation of organic substrates within biotechnological biogas production processes.

6.
Microbiome ; 6(1): 76, 2018 04 24.
Artículo en Inglés | MEDLINE | ID: mdl-29690922

RESUMEN

BACKGROUND: The characterization of microbial communities based on sequencing and analysis of their genetic information has become a popular approach also referred to as metagenomics; in particular, the recent advances in sequencing technologies have enabled researchers to study even the most complex communities. Metagenome analysis, the assignment of sequences to taxonomic and functional entities, however, remains a tedious task: large amounts of data need to be processed. There are a number of approaches addressing particular aspects, but scientific questions are often too specific to be answered by a general-purpose method. RESULTS: We present MGX, a flexible and extensible client/server-framework for the management and analysis of metagenomic datasets; MGX features a comprehensive set of adaptable workflows required for taxonomic and functional metagenome analysis, combined with an intuitive and easy-to-use graphical user interface offering customizable result visualizations. At the same time, MGX allows to include own data sources and devise custom analysis pipelines, thus enabling researchers to perform basic as well as highly specific analyses within a single application. CONCLUSIONS: With MGX, we provide a novel metagenome analysis platform giving researchers access to the most recent analysis tools. MGX covers taxonomic and functional metagenome analysis, statistical evaluation, and a wide range of visualizations easing data interpretation. Its default taxonomic classification pipeline provides equivalent or superior results in comparison to existing tools.


Asunto(s)
Sistemas de Administración de Bases de Datos , Metagenoma , Metagenómica/métodos , Microbiota , Reproducibilidad de los Resultados , Interfaz Usuario-Computador , Flujo de Trabajo
7.
J Biotechnol ; 261: 10-23, 2017 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-28823476

RESUMEN

Metagenomics has proven to be one of the most important research fields for microbial ecology during the last decade. Starting from 16S rRNA marker gene analysis for the characterization of community compositions to whole metagenome shotgun sequencing which additionally allows for functional analysis, metagenomics has been applied in a wide spectrum of research areas. The cost reduction paired with the increase in the amount of data due to the advent of next-generation sequencing led to a rapidly growing demand for bioinformatic software in metagenomics. By now, a large number of tools that can be used to analyze metagenomic datasets has been developed. The Bielefeld-Gießen center for microbial bioinformatics as part of the German Network for Bioinformatics Infrastructure bundles and imparts expert knowledge in the analysis of metagenomic datasets, especially in research on microbial communities involved in anaerobic digestion residing in biogas reactors. In this review, we give an overview of the field of metagenomics, introduce into important bioinformatic tools and possible workflows, accompanied by application examples of biogas surveys successfully conducted at the Center for Biotechnology of Bielefeld University.


Asunto(s)
Biocombustibles/microbiología , Biología Computacional/métodos , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Metagenoma/genética , Metagenómica/métodos , Anaerobiosis
8.
Arch Microbiol ; 199(4): 613-620, 2017 May.
Artículo en Inglés | MEDLINE | ID: mdl-28074233

RESUMEN

Aquaponics is a solution for sustainable production of fish and plants in a single semi-closed system, where nutrient-rich water from the aquaculture provides nutrients for plant growth. We examined the microbial communities within an experimental aquaponics system. Whereas the fish feces contained a separate community dominated by bacteria of the genus Cetobacterium, the samples from plant roots, biofilter, and periphyton were more similar to each other, while the communities were more diverse. Detailed examination of the data gave the first indications to functional groups of organisms in the different compartments of the aquaponic system. As other nitrifiers other than members of the genus Nitrospira were only present at low numbers, it was anticipated that Nitrospirae may perform the nitrification process in the biofilm.


Asunto(s)
Acuicultura , Bacterias/aislamiento & purificación , Peces/microbiología , Hidroponía , Raíces de Plantas/microbiología , Animales , Bacterias/clasificación , Biodiversidad , Biopelículas , Nitrificación
9.
Genome Announc ; 4(6)2016 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-27908994

RESUMEN

We report here the complete 4.7-Mb genome sequence of Xanthomonas translucens pv. translucens DSM 18974T, which causes black chaff disease on barley (Hordeum vulgare). Genome data of this X. translucens type strain will improve our understanding of this bacterial species.

10.
Bioinformatics ; 32(24): 3702-3708, 2016 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-27540267

RESUMEN

MOTIVATION: The vast amount of already available and currently generated read mapping data requires comprehensive visualization, and should benefit from bioinformatics tools offering a wide spectrum of analysis functionality from just one source. Appropriate handling of multiple mapped reads during mapping analyses remains an issue that demands improvement. RESULTS: The capabilities of the read mapping analysis and visualization tool ReadXplorer were vastly enhanced. Here, we present an even finer granulated read mapping classification, improving the level of detail for analyses and visualizations. The spectrum of automatic analysis functions has been broadened to include genome rearrangement detection as well as correlation analysis between two mapping data sets. Existing functions were refined and enhanced, namely the computation of differentially expressed genes, the read count and normalization analysis and the transcription start site detection. Additionally, ReadXplorer 2 features a highly improved support for large eukaryotic data sets and a command line version, enabling its integration into workflows. Finally, the new version is now able to display any kind of tabular results from other bioinformatics tools. AVAILABILITY AND IMPLEMENTATION: http://www.readxplorer.org CONTACT: readxplorer@computational.bio.uni-giessen.deSupplementary information: Supplementary data are available at Bioinformatics online.


Asunto(s)
Biología Computacional/métodos , Variación Estructural del Genoma , Análisis de Secuencia de ARN/métodos , Programas Informáticos , Sitio de Iniciación de la Transcripción , Arabidopsis/genética , Expresión Génica , Genoma , ARN de Planta/genética
11.
Biotechnol Biofuels ; 9: 171, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27525040

RESUMEN

BACKGROUND: One of the most promising technologies to sustainably produce energy and to mitigate greenhouse gas emissions from combustion of fossil energy carriers is the anaerobic digestion and biomethanation of organic raw material and waste towards biogas by highly diverse microbial consortia. In this context, the microbial systems ecology of thermophilic industrial-scale biogas plants is poorly understood. RESULTS: The microbial community structure of an exemplary thermophilic biogas plant was analyzed by a comprehensive approach comprising the analysis of the microbial metagenome and metatranscriptome complemented by the cultivation of hydrolytic and acido-/acetogenic Bacteria as well as methanogenic Archaea. Analysis of metagenome-derived 16S rRNA gene sequences revealed that the bacterial genera Defluviitoga (5.5 %), Halocella (3.5 %), Clostridium sensu stricto (1.9 %), Clostridium cluster III (1.5 %), and Tepidimicrobium (0.7 %) were most abundant. Among the Archaea, Methanoculleus (2.8 %) and Methanothermobacter (0.8 %) were predominant. As revealed by a metatranscriptomic 16S rRNA analysis, Defluviitoga (9.2 %), Clostridium cluster III (4.8 %), and Tepidanaerobacter (1.1 %) as well as Methanoculleus (5.7 %) mainly contributed to these sequence tags indicating their metabolic activity, whereas Hallocella (1.8 %), Tepidimicrobium (0.5 %), and Methanothermobacter (<0.1 %) were transcriptionally less active. By applying 11 different cultivation strategies, 52 taxonomically different microbial isolates representing the classes Clostridia, Bacilli, Thermotogae, Methanomicrobia and Methanobacteria were obtained. Genome analyses of isolates support the finding that, besides Clostridium thermocellum and Clostridium stercorarium, Defluviitoga tunisiensis participated in the hydrolysis of hemicellulose producing ethanol, acetate, and H2/CO2. The latter three metabolites are substrates for hydrogentrophic and acetoclastic archaeal methanogenesis. CONCLUSIONS: Obtained results showed that high abundance of microorganisms as deduced from metagenome analysis does not necessarily indicate high transcriptional or metabolic activity, and vice versa. Additionally, it appeared that the microbiome of the investigated thermophilic biogas plant comprised a huge number of up to now unknown and insufficiently characterized species.

12.
J Biotechnol ; 231: 268-279, 2016 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-27312700

RESUMEN

To study the metaproteome of a biogas-producing microbial community, fermentation samples were taken from an agricultural biogas plant for microbial cell and protein extraction and corresponding metagenome analyses. Based on metagenome sequence data, taxonomic community profiling was performed to elucidate the composition of bacterial and archaeal sub-communities. The community's cytosolic metaproteome was represented in a 2D-PAGE approach. Metaproteome databases for protein identification were compiled based on the assembled metagenome sequence dataset for the biogas plant analyzed and non-corresponding biogas metagenomes. Protein identification results revealed that the corresponding biogas protein database facilitated the highest identification rate followed by other biogas-specific databases, whereas common public databases yielded insufficient identification rates. Proteins of the biogas microbiome identified as highly abundant were assigned to the pathways involved in methanogenesis, transport and carbon metabolism. Moreover, the integrated metagenome/-proteome approach enabled the examination of genetic-context information for genes encoding identified proteins by studying neighboring genes on the corresponding contig. Exemplarily, this approach led to the identification of a Methanoculleus sp. contig encoding 16 methanogenesis-related gene products, three of which were also detected as abundant proteins within the community's metaproteome. Thus, metagenome contigs provide additional information on the genetic environment of identified abundant proteins.


Asunto(s)
Biocombustibles/microbiología , Reactores Biológicos/microbiología , Metagenoma/genética , Consorcios Microbianos/genética , Proteoma/análisis , Bases de Datos de Proteínas , Electroforesis en Gel Bidimensional , Proteoma/genética
13.
Sci Rep ; 6: 28284, 2016 06 20.
Artículo en Inglés | MEDLINE | ID: mdl-27321040

RESUMEN

The use of biopurification systems (BPS) constitutes an efficient strategy to eliminate pesticides from polluted wastewaters from farm activities. BPS environments contain a high microbial density and diversity facilitating the exchange of information among bacteria, mediated by mobile genetic elements (MGEs), which play a key role in bacterial adaptation and evolution in such environments. Here we sequenced and characterized high-molecular-weight plasmids from a bacterial collection of an on-farm BPS. The high-throughput-sequencing of the plasmid pool yielded a total of several Mb sequence information. Assembly of the sequence data resulted in six complete replicons. Using in silico analyses we identified plasmid replication genes whose encoding proteins represent 13 different Pfam families, as well as proteins involved in plasmid conjugation, indicating a large diversity of plasmid replicons and suggesting the occurrence of horizontal gene transfer (HGT) events within the habitat analyzed. In addition, genes conferring resistance to 10 classes of antimicrobial compounds and those encoding enzymes potentially involved in pesticide and aromatic hydrocarbon degradation were found. Global analysis of the plasmid pool suggest that the analyzed BPS represents a key environment for further studies addressing the dissemination of MGEs carrying catabolic genes and pathway assembly regarding degradation capabilities.


Asunto(s)
Escherichia coli/genética , Plásmidos , Replicón , Escherichia coli/química , Peso Molecular , Plásmidos/química , Plásmidos/genética , Plásmidos/aislamiento & purificación
14.
ISME J ; 10(5): 1102-12, 2016 May.
Artículo en Inglés | MEDLINE | ID: mdl-26574687

RESUMEN

Proteorhodopsins (PR) are light-driven proton pumps widely distributed in bacterioplankton. Although they have been thoroughly studied for more than a decade, it is still unclear how the proton motive force (pmf) generated by PR is used in most organisms. Notably, very few PR-containing bacteria show growth enhancement in the light. It has been suggested that the presence of specific functions within a genome may define the different PR-driven light responses. Thus, comparing closely related organisms that respond differently to light is an ideal setup to identify the mechanisms involved in PR light-enhanced growth. Here, we analyzed the transcriptomes of three PR-harboring Flavobacteria strains of the genus Dokdonia: Dokdonia donghaensis DSW-1(T), Dokdonia MED134 and Dokdonia PRO95, grown in identical seawater medium in light and darkness. Although only DSW-1(T) and MED134 showed light-enhanced growth, all strains expressed their PR genes at least 10 times more in the light compared with dark. According to their genomes, DSW-1(T) and MED134 are vitamin-B1 auxotrophs, and their vitamin-B1 TonB-dependent transporters (TBDT), accounted for 10-18% of all pmf-dependent transcripts. In contrast, the expression of vitamin-B1 TBDT was 10 times lower in the prototroph PRO95, whereas its vitamin-B1 synthesis genes were among the highest expressed. Our data suggest that light-enhanced growth in DSW-1(T) and MED134 derives from the use of PR-generated pmf to power the uptake of vitamin-B1, essential for central carbon metabolism, including the TCA cycle. Other pmf-generating mechanisms available in darkness are probably insufficient to power transport of enough vitamin-B1 to support maximum growth of these organisms.


Asunto(s)
Flavobacteriaceae/genética , Flavobacteriaceae/metabolismo , Tiamina/metabolismo , Regulación Bacteriana de la Expresión Génica , Luz , Filogenia , Rodopsinas Microbianas/metabolismo , Agua de Mar/microbiología , Vitaminas/metabolismo
15.
Genome Announc ; 3(4)2015 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-26227590

RESUMEN

The complete genome sequence of the type strain Corynebacterium uterequi DSM 45634 from an equine urogenital tract specimen comprises 2,419,437 bp and 2,163 protein-coding genes. Candidate virulence factors are homologs of DIP0733, DIP1281, and DIP1621 from Corynebacterium diphtheriae and of sialidase precursors from Trueperella pyogenes and Chlamydia trachomatis.

16.
Genome Announc ; 3(4)2015 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-26227591

RESUMEN

The complete genome sequence of the type strain Corynebacterium testudinoris DSM 44614 from the mouth of a tortoise comprises 2,721,226 bp with a mean G+C content of 63.14%. The automatic annotation of the genome sequence revealed 4 rRNA operons, 51 tRNA genes, 7 other RNA genes, and 2,561 protein-coding regions.

17.
J Biotechnol ; 211: 20-30, 2015 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-26150016

RESUMEN

The yeast Cyberlindnera jadinii is a close relative of Candida utilis that is being used in the food and feed industries. Here, we present the 12.7Mb genome sequence of C. jadinii strain CBS 1600 generated by next generation sequencing. The deduced draft genome sequence consists of seven large scaffolds analogous to the seven largest chromosomes of C. utilis. An automated annotation of the C. jadinii genome identified 6147 protein-coding sequences. The level of ploidy for both genomes was analyzed by calling single nucleotide polymorphisms (SNPs) and was verified measuring nuclear DNA contents by florescence activated cell sorting (FACS). Both analyses determined the level of ploidy to diploid for C. jadinii and to triploid for C. utilis. However, SNP calling for C. jadinii also identified scaffold regions that seem to be haploid, triploid or tetraploid.


Asunto(s)
Ascomicetos/genética , Candida/genética , Genoma Fúngico , Polimorfismo de Nucleótido Simple/genética , Composición de Base/genética , ADN de Hongos/genética , Diploidia , Citometría de Flujo , Ontología de Genes , Genes Fúngicos , Ploidias , Reproducibilidad de los Resultados , Análisis de Secuencia de ADN , Homología de Secuencia de Ácido Nucleico
18.
Mol Plant Microbe Interact ; 28(7): 811-24, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-25675256

RESUMEN

Sinorhizobium fredii HH103 is a fast-growing rhizobial strain infecting a broad range of legumes including both American and Asiatic soybeans. In this work, we present the sequencing and annotation of the HH103 genome (7.25 Mb), consisting of one chromosome and six plasmids and representing the structurally most complex sinorhizobial genome sequenced so far. Comparative genomic analyses of S. fredii HH103 with strains USDA257 and NGR234 showed that the core genome of these three strains contains 4,212 genes (61.7% of the HH103 genes). Synteny plot analysis revealed that the much larger chromosome of USDA257 (6.48 Mb) is colinear to the HH103 (4.3 Mb) and NGR324 chromosomes (3.9 Mb). An additional region of the USDA257 chromosome of about 2 Mb displays similarity to plasmid pSfHH103e. Remarkable differences exist between HH103 and NGR234 concerning nod genes, flavonoid effect on surface polysaccharide production, and quorum-sensing systems. Furthermore a number of protein secretion systems have been found. Two genes coding for putative type III-secreted effectors not previously described in S. fredii, nopI and gunA, have been located on the HH103 genome. These differences could be important to understand the different symbiotic behavior of S. fredii strains HH103, USDA257, and NGR234 with soybean.


Asunto(s)
Genoma Bacteriano , Glycine max/microbiología , Sinorhizobium fredii/genética , Genes Bacterianos , Datos de Secuencia Molecular , Fijación del Nitrógeno/genética , Raíces de Plantas/microbiología , Polisacáridos Bacterianos/genética , Percepción de Quorum , Sinorhizobium fredii/fisiología , Simbiosis/genética
19.
Biotechnol Biofuels ; 8: 14, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25688290

RESUMEN

BACKGROUND: Decomposition of biomass for biogas production can be practiced under wet and dry fermentation conditions. In contrast to the dry fermentation technology, wet fermentation is characterized by a high liquid content and a relatively low total solid content. In this study, the composition and functional potential of a biogas-producing microbial community in an agricultural biogas reactor operating under wet fermentation conditions was analyzed by a metagenomic approach applying 454-pyrosequencing. The obtained metagenomic dataset and corresponding 16S rRNA gene amplicon sequences were compared to the previously sequenced comparable metagenome from a dry fermentation process, meeting explicitly identical boundary conditions regarding sample and community DNA preparation, sequencing technology, processing of sequence reads and data analyses by bioinformatics tools. RESULTS: High-throughput metagenome sequencing of community DNA from the wet fermentation process applying the pyrosequencing approach resulted in 1,532,780 reads, with an average read length of 397 bp, accounting for approximately 594 million bases of sequence information in total. Taxonomic comparison of the communities from wet and dry fermentation revealed similar microbial profiles with Bacteria being the predominant superkingdom, while the superkingdom Archaea was less abundant. In both biogas plants, the bacterial phyla Firmicutes, Bacteroidetes, Spirochaetes and Proteobacteria were identified with descending frequencies. Within the archaeal superkingdom, the phylum Euryarchaeota was most abundant with the dominant class Methanomicrobia. Functional profiles of the communities revealed that environmental gene tags representing methanogenesis enzymes were present in both biogas plants in comparable frequencies. 16S rRNA gene amplicon high-throughput sequencing disclosed differences in the sub-communities comprising methanogenic Archaea between both processes. Fragment recruitments of metagenomic reads to the reference genome of the archaeon Methanoculleus bourgensis MS2(T) revealed that dominant methanogens within the dry fermentation process were highly related to the reference. CONCLUSIONS: Although process parameters, substrates and technology differ between the wet and dry biogas fermentations analyzed in this study, community profiles are very similar at least at higher taxonomic ranks, illustrating that core community taxa perform key functions in biomass decomposition and methane synthesis. Regarding methanogenesis, Archaea highly related to the type strain M. bourgensis MS2(T) dominate the dry fermentation process, suggesting the adaptation of members belonging to this species to specific fermentation process parameters.

20.
J Biotechnol ; 199: 21-2, 2015 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-25680930

RESUMEN

Streptomyces lividans TK24 is the standard host for the heterologous expression of a number of different proteins and antibiotic-synthesizing enzymes. As such, it is often used as an experimental microbial cell factory for the production of secreted heterologous proteins including human cytokines and industrial enzymes, and of several antibiotics. It accepts methylated DNA and is an ideal Streptomyces cloning system. Here, we report the complete genome sequence of S. lividans TK24 that includes a plasmid-less genome of 8.345Mbp (72.24% G+C content).


Asunto(s)
Genoma Bacteriano/genética , Streptomyces lividans/genética , Proteínas Bacterianas/genética , Datos de Secuencia Molecular , Streptomyces/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA