Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Environ Sci Pollut Res Int ; 30(47): 103836-103850, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37691063

RESUMEN

The Edwards Aquifer is the primary water resource for over 2 million people in Texas and faces challenges including fecal contamination of water recharging the aquifer, while effectiveness of best management practices (BMPs) such as detention basins in mitigating fecal pollution remains poorly understood. For this study, the inlet and outlet of a detention basin overlying the aquifer's recharge zone were sampled following storm events using automated samplers. Microbial source tracking and culture-based methods were used to determine the occurrence and removal of fecal genetic markers and fecal coliform bacteria in collected water samples. Markers included E. coli (EC23S857), Enterococcus (Entero1), human (HF183), canine (BacCan), and bird (GFD). Fecal coliforms, EC23S857, and Entero1 were detected following each storm event. GFD was the most frequent host-associated marker detected (91% of samples), followed by BacCan (46%), and HF183 (17%). Wilcoxon signed rank tests indicated significantly lower outlet concentrations for fecal coliforms, EC23S857, and Entero1, but not for HF183, GFD, and BacCan. Higher GFD and BacCan outlet concentrations may be due to factors independent of basin design, such as the non-point source nature of bird fecal contamination and domestic dog care practices in neighborhoods contributing to the basin. Mann-Whitney tests showed marker concentrations were not significantly higher during instances of fecal coliform water quality criterion exceedance, except for E. coli, and that fecal coliform concentrations were not significantly different based on marker detection. Overall, results suggest that the detention basin is effective in attenuating fecal contamination associated with fecal coliforms and the general markers, but not for host-associated markers. Consequently, management efforts should focus on mitigating dog and bird-associated fecal pollution in the study region.


Asunto(s)
Agua Subterránea , Contaminación del Agua , Animales , Perros , Humanos , Contaminación del Agua/análisis , Monitoreo del Ambiente/métodos , Texas , Escherichia coli , Microbiología del Agua , Bacterias/genética , Enterococcus , Heces/microbiología , Aves
2.
Chemosphere ; 339: 139772, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37572713

RESUMEN

Stormwater detention basins are used to minimize peak discharges and improve water quality mainly through sedimentation; however, limited studies have evaluated the water quality performance of detention basins located over karst aquifers. Karst aquifers are vital sources of drinking water for many regions of the world and their recharge areas are susceptible to contamination from surface water resources. In this study, an analysis of two stormwater detention basins (namely, Kyle and TPC) located in the recharge zone of one of the most prolific karst aquifers in the world (Edwards Aquifer, San Antonio, Texas), were conducted over a period of one year to quantify the water quality and hydrologic performance of the basins. Automated samples were collected during the storm events and analyzed for nitrate (NO3--N), nitrite (NO2--N), ammonia (NH3-N), total dissolved nitrogen (TDN), phosphorus (PO43-), total suspended solids (TSS), total dissolved solids (TDS), total carbon (TC), total organic carbon (TOC), and chemical oxygen demand (COD). Both basins reduced NH3-N, TSS and COD concentrations significantly while NO3--N and PO43- concentrations exhibited a net export. Furthermore, TPC showed greater reductions in NO2--N, TOC and TC concentrations compared to Kyle. Higher TSS removal was observed at TPC due to differences in retention time. A volume reduction of 44% and 64% was observed in TPC and Kyle, respectively. The results of this study demonstrate that stormwater detention basins located over the Edwards Aquifer effectively remove particulate pollutants while also being a potential source of dissolved pollutants such as nitrate. Overall, the results presented here have important implications for operation and maintenance of stormwater basins constructed over recharge zones of Edwards Aquifer.


Asunto(s)
Contaminantes Ambientales , Agua Subterránea , Contaminantes Químicos del Agua , Calidad del Agua , Contaminantes Químicos del Agua/análisis , Nitratos/análisis , Dióxido de Nitrógeno/análisis , Lluvia , Contaminantes Ambientales/análisis , Carbono/análisis , Monitoreo del Ambiente/métodos
3.
J Appl Microbiol ; 134(8)2023 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-37496204

RESUMEN

AIMS: Stormwater detention basins serve as vital components in mitigating the adverse effects of urban runoff, and investigating the microbial dynamics within these systems is crucial for enhancing their performance and pollutant removal capabilities. The aim of this study was to examine and compare the soil bacterial communities in two stormwater detention basins located on the Edwards Aquifer in Bexar County, Texas, USA, and evaluate how soil physiochemical properties may affect them. METHODS AND RESULTS: Each basin soil was sampled in two different seasons at varying depths and the structure of microbial communities was examined using paired end Illumina sequencing using V3 and V4 region of 16S rRNA gene. PICRUSt2 was used to predict functional genes in the nitrogen cycle. In addition, soil physicochemical properties such as pH, carbon, nitrogen, and phosphorus and particle size were examined. A beta diversity analysis revealed that basins had distinctive microbial communities. Additionally, soil particle size, phosphorus and ammonia significantly correlated with some of the dominant phyla in the basins. Proteobacteria and Acidobacteria showed a positive correlation with the relative abundances of nitrogen-cycling genes, while Actinobacteria showed a negative correlation. CONCLUSIONS: This study evaluated the associations between soil physicochemical properties and microbial community dynamics in stormwater basins. The study also predicts the relative abundance of nitrogen cycling genes, suggesting shared functional traits within microbial communities. The findings have implications for understanding the potential role of microbial communities in nitrogen cycling processes and contribute to developing sustainable stormwater management strategies and protecting water quality in urban areas.


Asunto(s)
Ciclo del Nitrógeno , Suelo , Suelo/química , ARN Ribosómico 16S/genética , Microbiología del Suelo , Bacterias/genética , Nitrógeno , Fósforo
4.
J Environ Manage ; 325(Pt B): 116669, 2023 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-36335700

RESUMEN

Stormwater control measures such as detention basins are used to mitigate the negative effects of urban stormwater resulting from watershed development. In this study, the performance of a detention basin in mitigating nitrogen pollution was examined and the abundance of N-cycling genes (amoA, nirK, nosZ, hzsB and Ntsp-amoA) present in the soil media of the basin was measured using quantitative PCR. Results showed a net export of nitrogen from the basin, however, differences between in- and outflow concentrations were not significant. Furthermore, the quantitative PCR showed that nirK (denitrification gene) was more abundant in the winter season, whereas amoA (nitrification gene) was more abundant in the summer season. The abundance of nirK, Ntsp-amoA and hzsB genes also varied with the sampling depth of soil and based on 16S rRNA gene sequencing of soil samples, Actinobacteria and Proteobacteria were the most dominant phyla. Species diversity appeared higher in summer, while the top and bottom layer of soil clustered separately based on the bacterial community structure. These results underline the importance of understanding nitrogen dynamics and microbial processes within stormwater control measures to enhance their design and performance.


Asunto(s)
Microbiota , Nitrógeno , Nitrógeno/análisis , Desnitrificación/genética , ARN Ribosómico 16S/genética , Nitrificación , Suelo/química , Microbiología del Suelo
5.
Environ Sci Process Impacts ; 24(12): 2450-2464, 2022 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-36444711

RESUMEN

Fecal pollution of surface waters in the karst-dominated Edwards aquifer is a serious concern as contaminated waters can rapidly transmit to groundwaters, which are used for domestic purposes. Although microbial source tracking (MST) detects sources of fecal pollution, integrating data related to environmental processes (precipitation) and land management practices (septic tanks) with MST can provide better understanding of fecal contamination fluxes to implement effective mitigation strategies. Here, we investigated fecal sources and their spatial origins at recharge and contributing zones of the Edwards aquifer and identified their relationship with nutrients in different environmental/land-use conditions. During March 2019 to March 2020, water samples (n = 295) were collected biweekly from 11 sampling sites across four creeks and analyzed for six physico-chemical parameters and ten fecal indicator bacteria (FIB) and MST-based qPCR assays targeting general (E. coli, Enterococcus, and universal Bacteroidales), human (BacHum and HF183), ruminant (Rum2Bac), cattle (BacCow), canine (BacCan), and avian (Chicken/Duck-Bac and GFD) fecal markers. Among physico-chemical parameters, nitrate-N (NO3-N) concentrations at several sites were higher than estimated national background concentrations for streams. General fecal markers were detected in the majority of water samples, and among host-associated MST markers, GFD, BacCow, and Rum2Bac were more frequently detected than BacCan, BacHum, and HF183, indicating avian and ruminant fecal contamination is a major concern. Cluster analysis results indicated that sampling sites clustered based on precipitation and septic tank density showed significant correlation (p < 0.05) between nutrients and FIB/MST markers, indicating these factors are influencing the spatial and temporal variations of fecal sources. Overall, results emphasize that integration of environmental/land-use data with MST is crucial for a better understanding of nutrient loading and fecal contamination.


Asunto(s)
Agua Subterránea , Microbiología del Agua , Perros , Animales , Bovinos , Humanos , Escherichia coli , Marcadores Genéticos , Monitoreo del Ambiente/métodos , Contaminación del Agua/análisis , Heces/microbiología , Bacterias/genética , Agua/análisis
6.
ACS ES T Water ; 2(11): 2060-2069, 2022 Nov 11.
Artículo en Inglés | MEDLINE | ID: mdl-37552728

RESUMEN

The purpose of this study was to conduct a correlative assessment of SARS-CoV-2 RNA concentrations in wastewater with COVID-19 cases and a systematic evaluation of the effect of using different virus concentration methods and recovery and normalization approaches. We measured SARS-CoV-2 RNA concentrations at two different wastewater treatment plants (WWTPs) in the Bexar County of Texas from October 2020 to May 2021 (32 weeks) using reverse transcription droplet digital PCR (RT-ddPCR). We evaluated three different adsorption-extraction (AE) based virus concentration methods (acidification, addition of MgCl2, or without any pretreatment) using bovine coronavirus (BCoV) as surrogate virus and observed that the direct AE method showed the highest mean recovery. COVID-19 cases were correlated significantly with SARS-CoV-2 N1 concentrations in Salitrillo (ρ = 0.75, p < 0.001) and Martinez II (ρ = 0.68, p < 0.001) WWTPs, but normalizing to a spiked recovery control (BCoV) or a fecal marker (HF183) reduced correlations for both treatment plants. The results generated in this 32-week monitoring study will enable researchers to prioritize the virus recovery method and subsequent correlation studies for wastewater surveillance.

7.
FEMS Microbes ; 2: xtab015, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-37334234

RESUMEN

The purpose of this study was to conduct a preliminary assessment of the levels of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) RNA in wastewater at the Salitrillo Wastewater Treatment Plant in Texas during the initial peak of coronavirus disease 2019 (COVID-19) outbreak. Raw wastewater influent (24 h composite, time-based 1 L samples, n = 13) was collected weekly during June-August 2020. We measured SARS-CoV-2 RNA in wastewater by reverse transcription droplet digital PCR using the same N1 and N2 primer sets as employed in COVID-19 clinical testing. Virus RNA copies for positive samples (77%) ranged from 1.4 × 102 to 4.1 × 104 copies per liter of wastewater, and exhibited both increasing and decreasing trends, which corresponded well with the COVID-19 weekly infection rate (N1: ρ = 0.558, P = 0.048; N2: ρ = 0.487, P = 0.092). A sharp increase in virus RNA concentrations was observed during July sampling dates, consistent with the highest number of COVID-19 cases reported. This could be attributed to an increase in the spread of COVID-19 infection due to the Fourth of July holiday week gatherings (outdoor gatherings were limited to 100 people during that time). Our data show that wastewater surveillance is an effective tool to determine trends in infectious disease prevalence, and provide complementary information to clinical testing.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA