Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Adv Mater ; : e2404174, 2024 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-38896111

RESUMEN

Orbitronic devices operate by manipulating orbitally polarized currents. Recent studies have shown that these orbital currents can be excited by femtosecond laser pulses in a ferromagnet such as Ni and converted into ultrafast charge currents via orbital-to-charge conversion. However, the terahertz emission from orbitronic terahertz emitters based on Ni is still much weaker than that of the typical spintronic terahertz emitter. Here, we report a more efficient light-induced generation of orbital current from a CoPt alloy, and the terahertz emission from CoPt/Cu/MgO is comparable to that of benchmark spintronic terahertz emitters. By varying the composition of the CoPt alloy, the thickness of Cu, and the capping layer, we confirm that THz emission primarily originates from the orbital accumulation generated within CoPt, propagating through Cu, followed by subsequent orbital-to-charge conversion due to the inverse orbital Rashba-Edelstein effect at the Cu/MgO interface. This study provides strong evidence for the efficient orbital current generation in CoPt alloy, paving the way for efficient orbital terahertz emitters. This article is protected by copyright. All rights reserved.

2.
Nat Commun ; 15(1): 2043, 2024 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-38448561

RESUMEN

Orbitronics is based on the use of orbital currents as information carriers. Orbital currents can be generated from the conversion of charge or spin currents, and inversely, they could be converted back to charge or spin currents. Here we demonstrate that orbital currents can also be generated by femtosecond light pulses on Ni. In multilayers associating Ni with oxides and nonmagnetic metals such as Cu, we detect the orbital currents by their conversion into charge currents and the resulting terahertz emission. We show that the orbital currents extraordinarily predominate the light-induced spin currents in Ni-based systems, whereas only spin currents can be detected with CoFeB-based systems. In addition, the analysis of the time delays of the terahertz pulses leads to relevant information on the velocity and propagation length of orbital carriers. Our finding of light-induced orbital currents and our observation of their conversion into charge currents opens new avenues in orbitronics, including the development of orbitronic terahertz devices.

3.
ACS Appl Mater Interfaces ; 13(27): 32579-32589, 2021 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-34196522

RESUMEN

A perpendicularly magnetized spin injector with a high Curie temperature is a prerequisite for developing spin optoelectronic devices on two-dimensional (2D) materials working at room temperature (RT) with zero applied magnetic field. Here, we report the growth of Ta/CoFeB/MgO structures with large perpendicular magnetic anisotropy (PMA) on full-coverage monolayer (ML) molybdenum disulfide (MoS2). A large perpendicular interface anisotropy energy of 0.975 mJ/m2 has been obtained at the CoFeB/MgO interface, comparable to that observed in magnetic tunnel junction systems. It is found that the insertion of MgO between the ferromagnetic (FM) metal and the 2D material can effectively prevent the diffusion of the FM atoms into the 2D material. Moreover, the MoS2 ML favors a MgO(001) texture and plays a critical role in establishing the large PMA. First-principles calculations on a similar Fe/MgO/MoS2 structure reveal that the MgO thickness can modify the MoS2 band structure, from a direct band gap with 3ML-MgO to an indirect band gap with 7 ML-MgO. The proximity effect induced by Fe results in splitting of 10 meV in the valence band at the Γ point for the 3ML-MgO structure, while it is negligible for the 7 ML-MgO structure. These results pave the way to develop RT spin optoelectronic devices based on 2D transition-metal dichalcogenide materials.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...