Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Astrobiology ; 21(8): 1017-1027, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34382857

RESUMEN

Habitability has been generally defined as the capability of an environment to support life. Ecologists have been using Habitat Suitability Models (HSMs) for more than four decades to study the habitability of Earth from local to global scales. Astrobiologists have been proposing different habitability models for some time, with little integration and consistency among them, being different in function to those used by ecologists. Habitability models are not only used to determine whether environments are habitable, but they also are used to characterize what key factors are responsible for the gradual transition from low to high habitability states. Here we review and compare some of the different models used by ecologists and astrobiologists and suggest how they could be integrated into new habitability standards. Such standards will help improve the comparison and characterization of potentially habitable environments, prioritize target selections, and study correlations between habitability and biosignatures. Habitability models are the foundation of planetary habitability science, and the synergy between ecologists and astrobiologists is necessary to expand our understanding of the habitability of Earth, the Solar System, and extrasolar planets.


Asunto(s)
Exobiología , Medio Ambiente Extraterrestre , Planeta Tierra , Planetas
2.
Life (Basel) ; 10(2)2020 Jan 26.
Artículo en Inglés | MEDLINE | ID: mdl-31991857

RESUMEN

The search for different life forms elsewhere in the universe is a fascinating area of research in astrophysics and astrobiology. Currently, according to the NASA Exoplanet Archive database, 3876 exoplanets have been discovered. The Earth Similarity Index (ESI) is defined as the geometric mean of radius, density, escape velocity, and surface temperature and ranges from 0 (dissimilar to Earth) to 1 (similar to Earth). The ESI was created to index exoplanets on the basis of their similarity to Earth. In this paper, we examined rocky exoplanets whose physical conditions are potentially suitable for the survival of rock-dependent extremophiles, such as the cyanobacteria Chroococcidiopsis and the lichen Acarospora. The Rock Similarity Index (RSI) is first introduced and then applied to 1659 rocky exoplanets. The RSI represents a measure for Earth-like planets on which physical conditions are potentially suitable for rocky extremophiles that can survive in Earth-like extreme habitats (i.e., hot deserts and cold, frozen lands).

3.
Life Sci Space Res (Amst) ; 19: 13-16, 2018 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-30482276

RESUMEN

Finding life on other worlds is a fascinating area of astrobiology and planetary sciences. Presently, over 3800 exoplanets, representing a very wide range of physical and chemical environments, are known. Scientists are not only looking for traces of life outside Earth, but they are also trying to find out which of Earth's known organisms (ex: tardigrades (water bears)) would be able to survive on other planets. In our study, we have established a metric tool for distinguishing the potential survivability of active and cryptobiotic tardigrades on rocky-water and water-gas planets in our solar system and exoplanets, taking into consideration the geometrical means of six physical parameters such as radius, density, escape velocity, revolution period, surface temperature, and surface pressure of the considered planets. More than 3800 exoplanets are available as the main sample from Planetary Habitable Laboratory - Exoplanet Catalog (PHL-EC), from which we have chosen 57 exoplanets in our study including Earth and Mars, with water composition as reference. The Active Tardigrade Index (ATI) and Cryptobiotic Tardigrade Index (CTI) are two metric indices with minimum value 0 (= tardigrades cannot survive) and maximum 1 (= tardigrades will survive in their respective state). Values between 0 and 1 indicate a percentage chance of the active or cryptobiotic tardigrades surviving on a given exoplanet. Among known planets some of the exoplanets are tabulated as ATI and CTI indices for sample representation like: Kepler-100d, Kepler-48d, Kepler-289b, TRAPPIST-1 f and Kepler-106e. The results with Mars as the threshold indicates that Mars could be the only rock-water composition planet that could be more suitable for tardigrades than other considered exoplanets.


Asunto(s)
Exobiología/métodos , Medio Ambiente Extraterrestre , Planetas , Sistema Solar , Tardigrada , Animales , Temperatura , Agua
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...