Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Life (Basel) ; 13(4)2023 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-37109477

RESUMEN

Plants have been used for therapeutic purposes against various human ailments for several centuries. Plant-derived natural compounds have been implemented in clinics against microbial diseases. Unfortunately, the emergence of antimicrobial resistance has significantly reduced the efficacy of existing standard antimicrobials. The World Health Organization (WHO) has declared antimicrobial resistance as one of the top 10 global public health threats facing humanity. Therefore, it is the need of the hour to discover new antimicrobial agents against drug-resistant pathogens. In the present article, we have discussed the importance of plant metabolites in the context of their medicinal applications and elaborated on their mechanism of antimicrobial action against human pathogens. The WHO has categorized some drug-resistant bacteria and fungi as critical and high priority based on the need to develope new drugs, and we have considered the plant metabolites that target these bacteria and fungi. We have also emphasized the role of phytochemicals that target deadly viruses such as COVID-19, Ebola, and dengue. Additionally, we have also elaborated on the synergetic effect of plant-derived compounds with standard antimicrobials against clinically important microbes. Overall, this article provides an overview of the importance of considering phytogenous compounds in the development of antimicrobial compounds as therapeutic agents against drug-resistant microbes.

2.
Toxicology ; 454: 152742, 2021 04 30.
Artículo en Inglés | MEDLINE | ID: mdl-33662508

RESUMEN

Bisphenol AF, an analogue of Bisphenol A, is an important raw material used in the production of plastic and rubber substances like plastic bottles and containers, toys, and medical supplies. Increased contamination of air, water, dust, and food with BPA/BPAF, poses an enormous threat to humans, globally. BPAF/BPA are endocrine-disrupting chemicals that mimic estrogen hormone, thus increasing the risks of various metabolic and chronic disorders. Exposure of human blood cells to BPA/BPAF induces oxidative stress and genotoxicity. However, its effects on platelets, which play central roles in hemostasis and thrombosis, are not well-documented. In this study, we demonstrate that BPAF induces RIPK1-inflammasome axis-mediated necroptosis in platelets, increasing procoagulant platelet levels in vivo and in vitro. We also show that BPAF-induced rise in procoagulant platelets worsens pulmonary thromboembolism in vivo. The elevated procoagulant platelets are shown to increase platelet-neutrophil/monocyte aggregates that mediate pathogenesis of CVD, thrombosis, and chronic inflammatory diseases. Our results demonstrate the toxic effects of BPAF on platelets and how it propagates the clinical complications by elevating procoagulant platelet numbers. Altogether, our study sends a cautionary message against extensive use of BPAF in the plastic and rubber industries, resulting in frequent human exposure to it, thus endangering platelet functions.


Asunto(s)
Compuestos de Bencidrilo/toxicidad , Plaquetas/efectos de los fármacos , Disruptores Endocrinos/toxicidad , Necroptosis/efectos de los fármacos , Fenoles/toxicidad , Animales , Plaquetas/metabolismo , Femenino , Humanos , Inflamasomas/efectos de los fármacos , Inflamasomas/metabolismo , Masculino , Ratones , Embolia Pulmonar/fisiopatología , Proteína Serina-Treonina Quinasas de Interacción con Receptores/metabolismo
3.
J Pineal Res ; 69(3): e12676, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-32597503

RESUMEN

Melatonin is a chronobiotic hormone, which can regulate human diseases like cancer, atherosclerosis, respiratory disorders, and microbial infections by regulating redox system. Melatonin exhibits innate immunomodulation by communicating with immune system and influencing neutrophils to fight infections and inflammation. However, sustaining redox homeostasis and reactive oxygen species (ROS) generation in neutrophils are critical during chemotaxis, oxidative burst, phagocytosis, and neutrophil extracellular trap (NET) formation. Therefore, endogenous antioxidant glutathione (GSH) redox cycle is highly vital in regulating neutrophil functions. Reduced intracellular GSH levels and glutathione reductase (GR) activity in the neutrophils during clinical conditions like autoimmune disorders, neurological disorders, diabetes, and microbial infections lead to dysfunctional neutrophils. Therefore, we hypothesized that redox modulators like melatonin can protect neutrophil health and functions under GSH and GR activity-deficient conditions. We demonstrate the dual role of melatonin, wherein it protects neutrophils from oxidative stress-induced apoptosis by reducing ROS generation; in contrast, it restores neutrophil functions like phagocytosis, degranulation, and NETosis in GSH and GR activity-deficient neutrophils by regulating ROS levels both in vitro and in vivo. Melatonin mitigates LPS-induced neutrophil dysfunctions by rejuvenating GSH redox system, specifically GR activity by acting as a parallel redox system. Our results indicate that melatonin could be a potential auxiliary therapy to treat immune dysfunction and microbial infections, including virus, under chronic disease conditions by restoring neutrophil functions. Further, melatonin could be a promising immune system booster to fight unprecedented pandemics like the current COVID-19. However, further studies are indispensable to address the clinical usage of melatonin.


Asunto(s)
Antioxidantes/uso terapéutico , Glutatión/metabolismo , Melatonina/uso terapéutico , Neutrófilos/efectos de los fármacos , Animales , Antioxidantes/farmacología , Apoptosis/efectos de los fármacos , Infecciones por Coronavirus/tratamiento farmacológico , Evaluación Preclínica de Medicamentos , Femenino , Glutatión Reductasa/metabolismo , Humanos , Masculino , Melatonina/farmacología , Ratones , Mitocondrias/metabolismo , NADPH Oxidasas/metabolismo , Estrés Oxidativo/efectos de los fármacos , Especies Reactivas de Oxígeno/metabolismo , Tratamiento Farmacológico de COVID-19
4.
Toxicol Appl Pharmacol ; 334: 167-179, 2017 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-28911973

RESUMEN

Chronic hyperglycemia is one of the characteristic conditions associated with Diabetes Mellitus (DM), which often exerts deleterious effects on erythrocyte morphology and hemodynamic properties leading to anemia and diabetes-associated vascular complications. High glucose-induced over production of reactive oxygen species (ROS) can alter the blood cell metabolism and biochemical functions subsequently causing eryptosis (red blood cell death), yet another complication of concern in DM. Therefore, blocking high glucose-induced oxidative damage and subsequent eryptosis is of high importance in the better management of DM and associated vascular complications. In this study, we synthesized an oxolane derivative 1-(2,2-dimethyltetrahydrofuro[2,3][1,3]dioxol-5-yl)ethane-1,2-diol (DMTD), and demonstrated its efficacy to mitigate hyperglycemia-induced ROS generation and subsequent eryptosis. We showed that DMTD effectively inhibits high glucose-induced ROS generation, intracellular calcium levels, phosphaditylserine (PS) scrambling, calpain and band 3 activation, LDH leakage, protein glycation and lipid peroxidation, meanwhile enhances the antioxidant indices, osmotic fragility and Na+/K+-ATPase activity in erythrocytes. DMTD dose dependently decreased the glycated hemoglobin level and enhances the glucose utilization by erythrocytes in vitro. Further, DMTD alleviated the increase in ROS production, intracellular Ca2+ level and PS externalization in the erythrocytes of human diabetic subjects and enhanced the Na+/K+-ATPase activity. Taken together, the synthesized oxolane derivative DMTD could be a novel synthetic inhibitor of high glucose-induced oxidative stress and eryptosis. Considering the present results DMTD could be a potential therapeutic to treat DM and associated complications and open new avenues in developing synthetic therapeutic targeting of DM-associated complications.


Asunto(s)
Diabetes Mellitus/sangre , Membrana Eritrocítica/efectos de los fármacos , Eritrocitos/efectos de los fármacos , Glucosa/toxicidad , Estrés Oxidativo/efectos de los fármacos , Tiazoles/farmacología , Animales , Apoptosis/efectos de los fármacos , Diabetes Mellitus/metabolismo , Relación Dosis-Respuesta a Droga , Glucosa/administración & dosificación , Humanos , Peroxidación de Lípido , Ratones , Estructura Molecular , ATPasa Intercambiadora de Sodio-Potasio/metabolismo , Tiazoles/administración & dosificación , Tiazoles/química
5.
J Thromb Thrombolysis ; 43(2): 209-216, 2017 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-27804000

RESUMEN

Oxidative stress-induced platelet apoptosis is one among the many causes for the development and progression of many disorders like cardiovascular diseases, arthritis, Alzheimer's disease and many chronic inflammatory responses. Many studies have demonstrated the less optimal effect of N-acetyl cysteine (NAC) in oxidative stress-induced cellular damage. This could be due to its less lipophilicity which makes it difficult to enter the cellular membrane. Therefore in the present study, lipophilic sila-amide derivatives (6a and 6b) synthesized through the reaction of NAC with 3-Aminopropyltrimethylsilane and aminomethyltrimethylsilane were used to determine their protective property against oxidative stress-induced platelet apoptosis. At a concentration of 10 µM, compound 6a and 6b were able to significantly inhibit Rotenone/H2O2 induced platelet apoptotic markers like reactive oxygen species, intracellular calcium level, mitochondrial membrane potential, cytochrome c release from mitochondrial to the cytosol, caspase-9 and -3 activity and phosphatidylserine externalization. Therefore, the compounds can be extrapolated as therapeutic agents to protect platelets from oxidative stress-induced platelet apoptosis and its associated complications.


Asunto(s)
Acetilcisteína/farmacología , Apoptosis , Plaquetas/efectos de los fármacos , Estrés Oxidativo , Acetilcisteína/química , Amidas , Permeabilidad de la Membrana Celular , Células Cultivadas , Humanos , Interacciones Hidrofóbicas e Hidrofílicas , Sustancias Protectoras/química , Silanos/química , Silanos/farmacología , Relación Estructura-Actividad
6.
Mol Cell Biochem ; 414(1-2): 137-51, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26899710

RESUMEN

Thrombocytopenia is a major hematological concern in oxidative stress-associated pathologies and chronic clinical disorders, where premature platelet destruction severely affects the normal functioning of thrombosis and hemostasis. In addition, frequent exposure of platelets to chemical entities and therapeutic drugs immensely contributes in the development of thrombocytopenia leading to huge platelet loss, which might be fatal sometimes. Till date, there are only few platelet protective molecules known to combat thrombocytopenia. Hence, small molecule therapeutics are extremely in need to relieve the burden on limited treatment strategies of thrombocytopenia. In this study, we have synthesized a series of novel 3,4,5 trisubstituted isoxazole derivatives, among which compound 4a [4-methoxy-N'-(5-methyl-3-phenylisoxazole-4-carbonyl) benzenesulfonohydrazide] was found to significantly ameliorate the oxidative stress-induced platelet apoptosis by restoring various apoptotic markers such as ROS content, cytosolic Ca(2+) levels, eIF2-α phosphorylation, mitochondrial membrane depolarization, cytochrome c release, caspase activation, PS externalization, and cytotoxicity markers. Additionally, compound 4a dose dependently inhibits collagen-induced platelet aggregation. Hence, compound 4a can be considered as a prospective molecule in the treatment regime of platelet activation and apoptosis and other clinical conditions of thrombocytopenia. Further studies might ensure the use of compound 4a as a supplementary therapeutic agent to treat, thrombosis and CVD-associated complications. Over all, the study reveals a platelet protective efficacy of novel isoxazole derivative 4a with a potential to combat oxidative stress-induced platelet apoptosis.


Asunto(s)
Apoptosis/efectos de los fármacos , Plaquetas/efectos de los fármacos , Isoxazoles/farmacología , Agregación Plaquetaria/efectos de los fármacos , Especies Reactivas de Oxígeno/metabolismo , Plaquetas/metabolismo , Calcio/metabolismo , Caspasas/efectos de los fármacos , Glucosafosfato Deshidrogenasa/antagonistas & inhibidores , Glutatión/metabolismo , Disulfuro de Glutatión/metabolismo , Humanos , Isoxazoles/química , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , gamma-Glutamiltransferasa/antagonistas & inhibidores
7.
Inflammation ; 39(1): 269-280, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26363638

RESUMEN

The products of arachidonic acid metabolism by lipoxygenase (LOX) and cyclooxygenase (COX) significantly contribute to inflammation and carcinogenesis. Particularly, overproduction of leukotrienes and prostaglandins contribute to tumor growth by inducing formation of new blood vessels that sustain tumor cell viability and growth. Hence, search for novel anticancer drug via inhibition of LOX and COX enzymes constitutes an impressive strategy till date. In this context, a series of isoxazole derivatives were synthesized and screened for their anti-inflammatory activity via LOX and COX inhibition. Among these, 3-(3-methylthiophen-2-yl)-5-(3,4,5-trimethoxyphenyl)isoxazole (2b) showed significant inhibitory activity toward LOX and COX-2. Additionally, 2b showed a good inhibition of tumor growth, peritoneal angiogenesis, and ascite formation in Ehrlich ascites carcinoma (EAC) cell mouse model. Further, the in silico molecular studies also revealed that the compound 2b binds to the catalytic domain of LOX and COX-1 and COX-2 strongly with high atomic contact energy (ACE) score compared to standard drug. These initial pharmacological data support the fact that the compound 2b serves as the basis in developing anti-inflammatory and anticancer agents.


Asunto(s)
Inhibidores de la Angiogénesis/farmacología , Antiinflamatorios/farmacología , Antineoplásicos/farmacología , Carcinoma de Ehrlich/tratamiento farmacológico , Inhibidores de la Ciclooxigenasa 2/farmacología , Isoxazoles/farmacología , Inhibidores de la Lipooxigenasa/farmacología , Tiofenos/farmacología , Animales , Sitios de Unión/efectos de los fármacos , Dominio Catalítico/efectos de los fármacos , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Ciclooxigenasa 2/metabolismo , Modelos Animales de Enfermedad , Células HeLa , Humanos , Inflamación/tratamiento farmacológico , Lipooxigenasa/metabolismo , Ratones , Simulación del Acoplamiento Molecular
8.
Sci Rep ; 5: 14195, 2015 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-26388336

RESUMEN

Condensed-bicyclic triazolo-thiadiazoles were synthesized via an efficient "green" catalyst strategy and identified as effective inhibitors of PTP1B in vitro. The lead compound, 6-(2-benzylphenyl)-3-phenyl-[1,2,4]triazolo[3][1,3,4]thiadiazole (BPTT) was most effective against human hepatoma cells, inhibits cell invasion, and decreases neovasculature in HUVEC and also tumor volume in EAT mouse models. This report describes an experimentally unidentified class of condensed-bicyclic triazolo-thiadiazoles targeting PTP1B and its analogs could be the therapeutic drug-seeds.


Asunto(s)
Antineoplásicos/farmacología , Carcinoma Hepatocelular/tratamiento farmacológico , Neoplasias Hepáticas/tratamiento farmacológico , Proteína Tirosina Fosfatasa no Receptora Tipo 1/antagonistas & inhibidores , Tiadiazoles/farmacología , Triazoles/farmacología , Animales , Benzofuranos/farmacología , Carcinoma de Ehrlich/tratamiento farmacológico , Caspasa 3/biosíntesis , Línea Celular Tumoral , Movimiento Celular/efectos de los fármacos , Cromonas/farmacología , Ciclina D1/biosíntesis , Modelos Animales de Enfermedad , Relación Dosis-Respuesta a Droga , Femenino , Puntos de Control de la Fase G1 del Ciclo Celular/efectos de los fármacos , Células Hep G2 , Células Endoteliales de la Vena Umbilical Humana , Humanos , Proteínas Inhibidoras de la Apoptosis/biosíntesis , Ratones , Modelos Moleculares , Invasividad Neoplásica/patología , Neovascularización Patológica/tratamiento farmacológico , Poli(ADP-Ribosa) Polimerasas/biosíntesis , Proteínas Proto-Oncogénicas c-bcl-2/biosíntesis , Ratas , Ratas Sprague-Dawley , Factor de Transcripción STAT3/metabolismo , Relación Estructura-Actividad , Survivin , Tiadiazoles/síntesis química , Triazoles/síntesis química
9.
Bioorg Med Chem Lett ; 25(15): 2931-6, 2015 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-26048794

RESUMEN

In the present study, we used solution combustion synthesis-bismuth oxide (Bi2O3) as catalyst for the simple and efficient synthesis of 1,2-oxazine based derivatives of 6-fluoro-3-(piperidin-4-yl)benzo[d]isoxazoles, 1-arylpiperazine and carbazoles. (4aR,8aR)-4-(4-Methoxyphenyl)-3-((4-(4-methoxyphenyl)piperazin-1-yl)methyl)-4a,5,6,7,8,8a-hexahydro-4H-benzo[e][1,2]oxazine was found to be the most potent compound with a high degree of selectivity in inhibition towards COX2 (1.7 µM) over COX1 (40.4 µM) demonstrating the significance of 1,2-oxazine derivatives in developing COX2 specific inhibitors. Molecular docking analyses demonstrated that an isoleucine residue in the active site of COX1 is responsible for lower affinity to COX1 and increased potency towards COX2. Overall, our study reveals that the new 1,2-oxazine-based small molecules qualify as lead structures in developing COX2-specific inhibitors for anti-inflammatory therapy.


Asunto(s)
Inhibidores de la Ciclooxigenasa 2/química , Inhibidores de la Ciclooxigenasa 2/farmacología , Ciclooxigenasa 2/inmunología , Oxazinas/química , Oxazinas/farmacología , Antiinflamatorios/síntesis química , Antiinflamatorios/química , Antiinflamatorios/farmacología , Ciclooxigenasa 2/química , Inhibidores de la Ciclooxigenasa 2/síntesis química , Humanos , Inflamación/tratamiento farmacológico , Inflamación/enzimología , Inflamación/inmunología , Simulación del Acoplamiento Molecular , Oxazinas/síntesis química
10.
Bioorg Med Chem Lett ; 25(12): 2589-93, 2015 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-25920563

RESUMEN

Cancer is a leading cause of death in developed countries and second cause in developing countries. Herein we are reporting the synthesis of novel bisbenzimidazole derivatives and their anticancer properties. Among the newly synthesized bisbenzimidazoles, 3-(4-flurophenylsulfonyl)-1,7-dimethyl-2-propyl-1H,3H-2,5-bibenzo[d]imidazole (FDPB) presented as a potent antiproliferative agent against HeLa, HCT116 and A549 cells with selectivity over normal Vero cells (IC50 >50 µM). Additionally, we evaluated the efficacy of lead compound against Ehrlich ascites tumor (EAT) bearing mice for its antitumor and antiangiogenic properties. Our lead compound significantly reduced the cell viability, body weight, ascites volume and downregulated the formation of neovasculature and production of Vascular Endothelial Growth Factor (VEGF).


Asunto(s)
Inhibidores de la Angiogénesis/síntesis química , Antineoplásicos/síntesis química , Bisbenzimidazol/química , Inhibidores de la Angiogénesis/farmacología , Inhibidores de la Angiogénesis/uso terapéutico , Animales , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Ascitis , Bisbenzimidazol/farmacología , Bisbenzimidazol/uso terapéutico , Peso Corporal/efectos de los fármacos , Carcinoma de Ehrlich/tratamiento farmacológico , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Chlorocebus aethiops , Regulación hacia Abajo/efectos de los fármacos , Células HCT116 , Células HeLa , Humanos , Ratones , Factor A de Crecimiento Endotelial Vascular/metabolismo , Células Vero
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...