Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
ISME Commun ; 4(1): ycae005, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38439943

RESUMEN

Insects typically acquire their beneficial microbes early in development. Endosymbionts housed intracellularly are commonly integrated during oogenesis or embryogenesis, whereas extracellular microbes are only known to be acquired after hatching by immature instars such as larvae or nymphs. Here, however, we report on an extracellular symbiont that colonizes its host during embryo development. Tortoise beetles (Chrysomelidae: Cassidinae) host their digestive bacterial symbiont Stammera extracellularly within foregut symbiotic organs and in ovary-associated glands to ensure its vertical transmission. We outline the initial stages of symbiont colonization and observe that although the foregut symbiotic organs develop 3 days prior to larval emergence, they remain empty until the final 24 h of embryo development. Infection by Stammera occurs during that timeframe and prior to hatching. By experimentally manipulating symbiont availability to embryos in the egg, we describe a 12-h developmental window governing colonization by Stammera. Symbiotic organs form normally in aposymbiotic larvae, demonstrating that these Stammera-bearing structures develop autonomously. In adults, the foregut symbiotic organs are already colonized following metamorphosis and host a stable Stammera population to facilitate folivory. The ovary-associated glands, however, initially lack Stammera. Symbiont abundance subsequently increases within these transmission organs, thereby ensuring sufficient titers at the onset of oviposition ~29 days following metamorphosis. Collectively, our findings reveal that Stammera colonization precedes larval emergence, where its proliferation is eventually decoupled in adult beetles to match the nutritional and reproductive requirements of its host.

2.
PLoS Pathog ; 19(7): e1011497, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37498848

RESUMEN

As vectors of numerous plant pathogens, herbivorous insects play a key role in the epidemiology of plant disease. But how phytopathogens impact the metabolism, physiology, and fitness of their insect vectors is often unexplored within these tripartite interactions. Here, we examine the diverse symbioses forged between insects and members of the ascomycete fungal genus Fusarium. While Fusarium features numerous plant pathogens that are causal to diseases such as wilts and rots, many of these microbes also engage in stable mutualisms across several insect clades. Matching a diversity in symbiont localization and transmission routes, we highlight the various roles fusaria fulfill towards their insect hosts, from upgrading their nutritional physiology to providing defense against natural enemies. But as the insect partner is consistently herbivorous, we emphasize the convergent benefit Fusarium derives in exchange: propagation to a novel host plant. Collectively, we point to the synergy arising between a phytopathogen and its insect vector, and the consequences inflicted on their shared plant.


Asunto(s)
Ascomicetos , Fusarium , Animales , Fusarium/genética , Simbiosis , Insectos/microbiología , Plantas/microbiología
3.
3 Biotech ; 11(1): 26, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-33442524

RESUMEN

Glucosinolates protect plants from herbivory. Lepidopteran insects have developed resistance to glucosinolates which is well studied. However, the molecular effects of glucosinolate intake on insects are unexplored. To elucidate this, we performed transcriptomics and metabolomics of sinigrin-fed Helicoverpa armigera. Transcriptomics exhibits significant dysregulation of 2375 transcripts, of which 1575 are upregulated and 800 downregulated. Gene Ontology analysis of differentially expressed genes reveals that key hydrolases, oxidoreductases, and transferases are majorly affected. The negative impact of sinigrin is significant and localized in the endomembrane system and mitochondria. It also disturbs various biological processes such as regulation of protein metabolism and cytoskeletal organization. Furthermore, H. armigera putative myrosinase-like enzymes may catalyze the breakdown of sinigrin to allyl isothiocyanate (AITC). AITC targets the electron transport chain causing oxidative stress. KEGG pathway enrichment shows significant upregulation of oxidative phosphorylation, glutathione metabolism and amino acid metabolism. Activation of these pathways induces glutathione synthesis for sinigrin detoxification. Differential gene expression indicates upregulation of glutathione S-transferase and succinate dehydrogenase suggesting mitochondrial impact. Transcriptomics data correlated with metabolomics show changes in serine, methionine, ornithine, and other metabolite levels. It corroborates well with the transcript alterations supporting the increased glutathione production. Thus, our data suggest that sinigrin generates oxidative stress in H. armigera and insects alter their metabolic wiring to overcome sinigrin-mediated deleterious effects. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s13205-020-02596-5.

4.
J Biomol Struct Dyn ; 39(9): 3099-3114, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-32329408

RESUMEN

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection has resulted in the current COVID-19 pandemic. Worldwide this disease has infected over 2.5 million individuals with a mortality rate ranging from 5 to 10%. There are several efforts going on in the drug discovery to control the SARS-CoV-2 viral infection. The main protease (MPro) plays a critical role in viral replication and maturation, thus can serve as the primary drug target. To understand the structural evolution of MPro, we have performed phylogenetic and Sequence Similarity Network analysis, that depicted divergence of Coronaviridae MPro in five clusters specific to viral hosts. This clustering was corroborated with the comparison of MPro structures. Furthermore, it has been observed that backbone and binding site conformations are conserved despite variation in some of the residues. These attributes can be exploited to repurpose available viral protease inhibitors against SARS-CoV-2 MPro. In agreement with this, we performed screening of ∼7100 molecules including active ingredients present in the Ayurvedic anti-tussive medicines, anti-viral phytochemicals and synthetic anti-virals against SARS-CoV-2 MPro as the primary target. We identified several natural molecules like δ-viniferin, myricitrin, taiwanhomoflavone A, lactucopicrin 15-oxalate, nympholide A, afzelin, biorobin, hesperidin and phyllaemblicin B that strongly binds to SARS-CoV-2 MPro. Intrestingly, these molecules also showed strong binding with other potential targets of SARS-CoV-2 infection like viral receptor human angiotensin-converting enzyme 2 (hACE-2) and RNA dependent RNA polymerase (RdRp). We anticipate that our approach for identification of multi-target-directed ligand will provide new avenues for drug discovery against SARS-CoV-2 infection.Communicated by Ramaswamy H. Sarma.


Asunto(s)
COVID-19 , Preparaciones Farmacéuticas , Humanos , Ligandos , Pandemias , Péptido Hidrolasas , Filogenia , Inhibidores de Proteasas/farmacología , SARS-CoV-2
5.
Front Plant Sci ; 12: 800030, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-35003188

RESUMEN

Root-knot nematodes (RKNs) are notorious plant-parasitic nematodes first recorded in 1855 in cucumber plants. They are microscopic, obligate endoparasites that cause severe losses in agriculture and horticulture. They evade plant immunity, hijack the plant cell cycle, and metabolism to modify healthy cells into giant cells (GCs) - RKN feeding sites. RKNs secrete various effector molecules which suppress the plant defence and tamper with plant cellular and molecular biology. These effectors originate mainly from sub-ventral and dorsal oesophageal glands. Recently, a few non-oesophageal gland secreted effectors have been discovered. Effectors are essential for the entry of RKNs in plants, subsequently formation and maintenance of the GCs during the parasitism. In the past two decades, advanced genomic and post-genomic techniques identified many effectors, out of which only a few are well characterized. In this review, we provide molecular and functional details of RKN effectors secreted during parasitism. We list the known effectors and pinpoint their molecular functions. Moreover, we attempt to provide a comprehensive insight into RKN effectors concerning their implications on overall plant and nematode biology. Since effectors are the primary and prime molecular weapons of RKNs to invade the plant, it is imperative to understand their intriguing and complex functions to design counter-strategies against RKN infection.

6.
Curr Opin Insect Sci ; 33: 111-116, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-31358189

RESUMEN

Virus-insect interactions are primarily parasitic, yet diverse mutualistic interactions, some of which are symbiogenic, also occur. These viruses can modify insect physiology and behavior so that hosts can gain resistance against various biotic challenges like pathogen and parasites. In the recent past, many insect mutualistic viruses have been reported. Viruses can show symbiogenic interactions with some insects, which have been explored at the molecular level. However, understanding about molecular mechanisms for many of the mutualistic viruses is still enigmatic. Exploration of these interactions and its mechanism can shed light on phenomenon of virus mediated biotic stress resistance in insects.


Asunto(s)
Interacciones Huésped-Patógeno , Insectos/virología , Virus , Animales , Conducta Animal , Insectos/parasitología , Insectos/fisiología , Estrés Fisiológico , Simbiosis , Fenómenos Fisiológicos de los Virus
7.
Virusdisease ; 30(2): 245-251, 2019 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-31179363

RESUMEN

Groundnut bud necrosis virus (GBNV) is an economically important tospovirus transmitted by Thrips palmi (Thysanoptera: Thripidae). The current understanding of thrips-tospovirus interactions is largely based on the tomato spotted wilt virus-Frankliniella occidentalis relationship. Only limited information is available for the GBNV-T. palmi system. In the present study, available genome data of T. palmi and GBNV were used to predict the protein partners that may play a crucial role in the internalization of GBNV virions into thrips cells. Computational analyses showed that the GBNV precursor glycoprotein bears a signal peptide of 24 amino acids and a secondary cleavage site at position 434-435 separates the amino-terminal mature glycoprotein (GN) from the carboxyl-terminal glycoprotein (GC). Potential interactions of GBNV glycoproteins were predicted with T. palmi enolase, cathepsin, C-type lectin, clathrin and vacuolar ATP synthase subunit E. The in silico analyses suggested that C-type lectin is the primary cellular receptor to interact with GBNV-GN. After receptor binding, virus particles probably enter vector cells by clathrin-mediated endocytosis. This is the first in silico evidence of GBNV-T. palmi protein interaction.

8.
Arch Virol ; 163(4): 821-830, 2018 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-29307090

RESUMEN

Viruses represent some of the deadliest pathogens known to science. Recently they have been reported to have mutualistic interactions with their hosts, providing them direct or indirect benefits. The mutualism and symbiogenesis of such viruses with lower eukaryotic partners such as fungi, yeast, and insects have been reported but the full mechanism of interaction often remains an enigma. In many instances, these viral interactions provide resistance against several biotic and abiotic stresses, which could be the prime reason for the ecological success and positive selection of the hosts. These viruses modulate host metabolism and behavior, so both can obtain maximum benefits from the environment. They bring about micro- and macro-level changes in the hosts, benefiting their adaptation, reproduction, development, and survival. These virus-host interactions can be bilateral or tripartite with a variety of interacting partners. Exploration of these interactions can shed light on one of the well-coordinated biological phenomena of co-evolution and can be highly utilized for various applications in agriculture, fermentation and the pharmaceutical industries.


Asunto(s)
Adaptación Fisiológica/genética , Insectos/virología , Plantas/virología , Simbiosis/genética , Fenómenos Fisiológicos de los Virus/genética , Virus/genética , Agricultura/métodos , Animales , Coevolución Biológica , Hongos/virología , Humanos , Insectos/microbiología , Plantas/microbiología , Estrés Fisiológico , Virus/crecimiento & desarrollo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...