Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Diagnostics (Basel) ; 13(12)2023 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-37371001

RESUMEN

Osteosarcoma is the most common type of bone cancer that tends to occur in teenagers and young adults. Due to crowded context, inter-class similarity, inter-class variation, and noise in H&E-stained (hematoxylin and eosin stain) histology tissue, pathologists frequently face difficulty in osteosarcoma tumor classification. In this paper, we introduced a hybrid framework for improving the efficiency of three types of osteosarcoma tumor (nontumor, necrosis, and viable tumor) classification by merging different types of CNN-based architectures with a multilayer perceptron (MLP) algorithm on the WSI (whole slide images) dataset. We performed various kinds of preprocessing on the WSI images. Then, five pre-trained CNN models were trained with multiple parameter settings to extract insightful features via transfer learning, where convolution combined with pooling was utilized as a feature extractor. For feature selection, a decision tree-based RFE was designed to recursively eliminate less significant features to improve the model generalization performance for accurate prediction. Here, a decision tree was used as an estimator to select the different features. Finally, a modified MLP classifier was employed to classify binary and multiclass types of osteosarcoma under the five-fold CV to assess the robustness of our proposed hybrid model. Moreover, the feature selection criteria were analyzed to select the optimal one based on their execution time and accuracy. The proposed model achieved an accuracy of 95.2% for multiclass classification and 99.4% for binary classification. Experimental findings indicate that our proposed model significantly outperforms existing methods; therefore, this model could be applicable to support doctors in osteosarcoma diagnosis in clinics. In addition, our proposed model is integrated into a web application using the FastAPI web framework to provide a real-time prediction.

2.
Anal Biochem ; 610: 113978, 2020 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-33035462

RESUMEN

Drug-target interactions (DTIs) play a key role in drug development and discovery processes. Wet lab prediction of DTIs is time-consuming, expensive, and tedious. Fortunately, computational approaches can identify new interactions (drug-target pairs) and accelerate the process of drug repurposing. However, a vast number of interactions remain undiscovered; therefore, we proposed a deep learning-based method (deepACTION) for predicting potential or unknown DTIs. Here, each drug chemical structure and protein sequence are transformed according to structural and sequence information using different descriptors to represent their features correctly. There have been some challenges, such as the high dimensionality and class imbalance of data during the prediction process. To address these problems, we developed the MMIB technique to balance the majority and minority instances in the dataset and utilized a LASSO model to handle the high dimensionality of the data. In addition, we trained the convolutional neural network algorithm with balanced and reduced features for accurate prediction of DTIs. In this study, the AUC is considered a primary evaluation metric for comparing the performance of the deep ACTION model with that of existing methods by a 5-fold cross-validation test. Our experiential dataset obtained from the DrugBank database and our deepACTION model achieved an AUC of 0.9836 for this dataset. The experimental results ensured that the model can predict significant numbers of new DTIs and provide complete information to motivate scientists to develop drugs.


Asunto(s)
Redes Neurales de la Computación , Preparaciones Farmacéuticas/química , Proteínas/química , Área Bajo la Curva , Preparaciones Farmacéuticas/metabolismo , Proteínas/metabolismo , Curva ROC
3.
Anal Biochem ; 589: 113507, 2020 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-31734254

RESUMEN

Accurate identification of drug-target interaction (DTI) is a crucial and challenging task in the drug discovery process, having enormous benefit to the patients and pharmaceutical company. The traditional wet-lab experiments of DTI is expensive, time-consuming, and labor-intensive. Therefore, many computational techniques have been established for this purpose; although a huge number of interactions are still undiscovered. Here, we present pdti-EssB, a new computational model for identification of DTI using protein sequence and drug molecular structure. More specifically, each drug molecule is transformed as the molecular substructure fingerprint. For a protein sequence, different descriptors are utilized to represent its evolutionary, sequence, and structural information. Besides, our proposed method uses data balancing techniques to handle the imbalance problem and applies a novel feature eliminator to extract the best optimal features for accurate prediction. In this paper, four classes of DTI benchmark datasets are used to construct a predictive model with XGBoost. Here, the auROC is utilized as an evaluation metric to compare the performance of pdti-EssB method with recent methods, applying five-fold cross-validation. Finally, the experimental results indicate that our proposed method is able to outperform other approaches in predicting DTI, and introduces new drug-target interaction samples based on prediction probability scores. pdti-EssB webserver is available online at http://pdtiessb-uestc.com/.


Asunto(s)
Simulación por Computador , Descubrimiento de Drogas/métodos , Modelos Moleculares , Preparaciones Farmacéuticas/metabolismo , Proteínas/metabolismo , Secuencia de Aminoácidos , Biología Computacional/métodos , Bases de Datos de Proteínas , Conjuntos de Datos como Asunto , Unión Proteica , Dominios Proteicos , Relación Estructura-Actividad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA