RESUMEN
It is unclear what effect biological sex has on outcomes of acute lung injury (ALI). Clinical studies are confounded by their observational design. We addressed this knowledge gap with a preclinical systematic review of ALI animal studies. We searched MEDLINE and Embase for studies of intratracheal/intranasal/aerosolized lipopolysaccharide administration (the most common ALI model) that reported sex-stratified data. Screening and data extraction were conducted in duplicate. Our primary outcome was histological tissue injury and secondary outcomes included alveolar-capillary barrier alterations and inflammatory markers. We used a random-effects inverse variance meta-analysis, expressing data as standardized mean difference (SMD) with 95% confidence intervals (CIs). Risk of bias was assessed using the Systematic Review Centre for Laboratory Animal Experimentation (SYRCLE) tool. We identified six studies involving 132 animals across 11 independent experiments. A total of 41 outcomes were extracted, with the direction of effect suggesting greater severity in males than females in 26/41 outcomes (63%). One study reported on lung histology and found that male mice exhibited greater injury than females (SMD: 1.61, 95% CI: 0.53-2.69). Meta-analysis demonstrated significantly elevated albumin levels (SMD: 2.17, 95% CI: 0.63-3.70) and total cell counts (SMD: 0.80, 95% CI: 0.27-1.33) in bronchoalveolar lavage fluid from male mice compared with female mice. Most studies had an "unclear risk of bias." Our findings suggest sex-related differences in ALI severity. However, these conclusions are drawn from a small number of animals and studies. Further research is required to address the fundamental issue of biological sex differences in LPS-induced ALI.
Asunto(s)
Lesión Pulmonar Aguda , Lipopolisacáridos , Lesión Pulmonar Aguda/inducido químicamente , Lesión Pulmonar Aguda/patología , Lesión Pulmonar Aguda/metabolismo , Animales , Lipopolisacáridos/toxicidad , Femenino , Masculino , Caracteres Sexuales , Ratones , Factores Sexuales , Humanos , Modelos Animales de Enfermedad , Pulmón/patología , Pulmón/metabolismoRESUMEN
BACKGROUND: Preclinical sepsis models have been criticized for their inability to recapitulate human sepsis and suffer from methodological shortcomings that limit external validity and reproducibility. The National Preclinical Sepsis Platform (NPSP) is a consortium of basic science researchers, veterinarians, and stakeholders in Canada undertaking standardized multi-laboratory sepsis research to increase the efficacy and efficiency of bench-to-bedside translation. In this study, we aimed to develop and characterize a 72-h fecal-induced peritonitis (FIP) model of murine sepsis conducted in two independent laboratories. The experimental protocol was optimized by sequentially modifying dose of fecal slurry and timing of antibiotics in an iterative fashion, and then repeating the experimental series at site 1 and site 2. RESULTS: Escalating doses of fecal slurry (0.5-2.5 mg/g) resulted in increased disease severity, as assessed by the modified Murine Sepsis Score (MSS). However, the MSS was poorly associated with progression to death during the experiments, and mice were found dead without elevated MSS scores. Administration of early antibiotics within 4 h of inoculation rescued the animals from sepsis compared with late administration of antibiotics after 12 h, as evidenced by 100% survival and reduced bacterial load in peritoneum and blood in the early antibiotic group. Site 1 and site 2 had statistically significant differences in mortality (60% vs 88%; p < 0.05) for the same dose of fecal slurry (0.75 mg/g) and marked differences in body temperature between groups. CONCLUSIONS: We demonstrate a systematic approach to optimizing a 72-h FIP model of murine sepsis for use in multi-laboratory studies. Alterations to experimental conditions, such as dose of fecal slurry and timing of antibiotics, have clear impact on outcomes. Differences in mortality between sites despite rigorous standardization warrants further investigations to better understand inter-laboratory variation and methodological design in preclinical studies.
RESUMEN
BACKGROUND: The importance of investigating sex- and gender-dependent differences has been recently emphasized by major funding agencies. Notably, the influence of biological sex on clinical outcomes in sepsis is unclear, and observational studies suffer from the effect of confounding factors. The controlled experimental environment afforded by preclinical studies allows for clarification and mechanistic evaluation of sex-dependent differences. We propose a systematic review to assess the impact of biological sex on baseline responses to disease induction as well as treatment responses in animal models of sepsis. Given the lack of guidance surrounding sex-based analyses in preclinical systematic reviews, careful consideration of various factors is needed to understand how best to conduct analyses and communicate findings. METHODS: MEDLINE and Embase will be searched (2011-present) to identify preclinical studies of sepsis in which any intervention was administered and sex-stratified data reported. The primary outcome will be mortality. Secondary outcomes will include organ dysfunction, bacterial load, and IL-6 levels. Study selection will be conducted independently and in duplicate by two reviewers. Data extraction will be conducted by one reviewer and audited by a second independent reviewer. Data extracted from included studies will be pooled, and meta-analysis will be conducted using random effects modeling. Primary analyses will be stratified by animal age and will assess the impact of sex at the following time points: pre-intervention, in response to treatment, and post-intervention. Risk of bias will be assessed using the SYRCLE's risk-of-bias tool. Illustrative examples of potential methods to analyze sex-based differences are provided in this protocol. DISCUSSION: Our systematic review will summarize the current state of knowledge on sex-dependent differences in sepsis. This will identify current knowledge gaps that future studies can address. Finally, this review will provide a framework for sex-based analysis in future preclinical systematic reviews. SYSTEMATIC REVIEW REGISTRATION: PROSPERO CRD42022367726.
Asunto(s)
Sepsis , Animales , Modelos Animales de Enfermedad , Sepsis/terapia , Sepsis/complicaciones , Revisiones Sistemáticas como Asunto , Metaanálisis como AsuntoRESUMEN
Antioxidants and anti-inflammatory compounds are potential candidates to prevent age-related chronic diseases. Broccoli sprouts (BrSp) are a rich source of sulforaphane-a bioactive metabolite known for its antioxidant and anti-inflammatory properties. We tested the effect of chronic BrSp feeding on age-related decline in cardiometabolic health and lifespan in rats. Male and female Long-Evans rats were fed a control diet with or without dried BrSp (300 mg/kg body weight, 3 times per week) from 4 months of age until death. Body weight, body composition, blood pressure, heart function, and glucose and insulin tolerance were measured at 10, 16, 20, and 22 months of age. Behavioral traits were also examined at 18 months of age. BrSp feeding prolonged life span in females, whereas in males the positive effects on longevity were more pronounced in a subgroup of males (last 25% of survivors). Despite having modest effects on behavior, BrSp profoundly affected cardiometabolic parameters in a sex-dependent manner. BrSp-fed females had a lower body weight and visceral adiposity while BrSp-fed males exhibited improved glucose tolerance and reduced blood pressure when compared to their control counterparts. These findings highlight the sex-dependent benefits of BrSp on improving longevity and delaying cardiometabolic decline associated with aging in rats.
Asunto(s)
Brassica , Enfermedades Cardiovasculares , Insulinas , Animales , Ratas , Masculino , Femenino , Ratas Long-Evans , Longevidad , Antioxidantes , Glucosa , Peso CorporalRESUMEN
Diabetes mellitus, a group of metabolic disorders characterized by persistent hyperglycemia, affects millions of people worldwide and is on the rise. Dietary proteins, from a wide range of food sources, are rich in bioactive peptides with antidiabetic properties. Notable examples include AGFAGDDAPR, a black tea-derived peptide, VRIRLLQRFNKRS, a ß-conglycinin-derived peptide, and milk-derived peptide VPP, which have shown antidiabetic effects in diabetic rodent models through variety of pathways including improving beta-cells function, suppression of alpha-cells proliferation, inhibiting food intake, increasing portal cholecystokinin concentration, enhancing insulin signaling and glucose uptake, and ameliorating adipose tissue inflammation. Despite the immense research on glucoregulatory properties of bioactive peptides, incorporation of these bioactive peptides in functional foods or nutraceuticals is widely limited due to the existence of several challenges in the field of peptide research and commercialization. Ongoing research in this field, however, is fundamental to pave the road for this purpose.
RESUMEN
Sepsis is associated with circulatory dysfunction contributing to disturbed blood flow and organ injury. Decreased organ perfusion in sepsis is attributed, in part, to the loss of vasoregulatory mechanisms. Identifying which vascular beds are most susceptible to dysfunction is important for monitoring the recovery of organ function and guiding interventions. This study aimed to investigate the development of vascular dysfunction as sepsis progressed to septic shock. Anesthetized C57Bl/6 mice were instrumented with a fiberoptic pressure sensor in the carotid artery for blood pressure measurements. In subgroups of mice, regional blood flow measurements were taken by positioning a perivascular flow probe around either the left carotid, left renal, or superior mesenteric arteries. Hemodynamic parameters and their responsiveness to bolus doses of vasoactive drugs were recorded prior to and continuously after injection of fecal slurry (1.3 mg/g body weight) for 4 h. Fecal slurry-induced peritonitis reduced mean arterial pressure (62.7 ± 2.4 mmHg vs. 37.5 ± 3.2 mmHg in vehicle and septic mice, respectively), impaired cardiac function, and eventually reduced organ blood flow (71.9%, 66.8%, and 65.1% in the superior mesenteric, renal, and carotid arteries, respectively). The mesenteric vasculature exhibited dysregulation before the renal and carotid arteries, and this underlying dysfunction preceded the blood pressure decline and impaired organ blood flow.
RESUMEN
Stressors during the fetal and postnatal period affect the growth and developmental trajectories of offspring, causing lasting effects on physiologic regulatory systems. Here, we tested whether reduced uterine artery blood flow in late pregnancy would alter body composition in the offspring, and whether feeding offspring a western diet (WD) would aggravate these programming effects. Pregnant rats underwent bilateral uterine artery ligation (BUAL) or sham surgery on gestational day (GD)18 (term = GD22). At weaning, offspring from each group received either a normal diet (ND) or a WD. BUAL surgery increased fetal loss and caused offspring growth restriction, albeit body weights were no longer different at weaning, suggesting postnatal catch-up growth. BUAL did not affect body weight gain, fat accumulation, or plasma lipid profile in adult male offspring. In contrast, while ND-fed females from BUAL group were smaller and leaner than their sham-littermates, WD consumption resulted in excess weight gain, fat accumulation, and visceral adiposity. Moreover, WD increased plasma triglycerides and cholesterol in the BUAL-treated female offspring without any effect on sham littermates. These results demonstrate that reduced uterine artery blood flow during late pregnancy in rodents can impact body composition in the offspring in a sex-dependent manner, and these effects may be exacerbated by postnatal chronic WD consumption.
Asunto(s)
Dieta Occidental , Metabolismo de los Lípidos , Arteria Uterina/patología , Adipocitos/patología , Animales , Animales Recién Nacidos , Composición Corporal , Peso Corporal , Tamaño de la Célula , Femenino , Prueba de Tolerancia a la Glucosa , Ligadura , Lípidos/sangre , Masculino , Obesidad Abdominal/sangre , Obesidad Abdominal/patología , Tamaño de los Órganos , Embarazo , Ratas Long-EvansRESUMEN
In addition to the regulation of blood pressure, the renin-angiotensin system (RAS) also plays a key role in the onset and development of insulin resistance, which is central to metabolic syndrome (MetS). Due to the interplay between RAS and insulin resistance, antihypertensive compounds may exert beneficial effects in the management of MetS. Food-derived bioactive peptides with RAS blocking properties can potentially improve adipose tissue dysfunction, glucose intolerance, and insulin resistance involved in the pathogenesis of MetS. This review discusses the pathophysiology of hypertension and the association between RAS and pathogenesis of the MetS. The effects of bioactive peptides with RAS modulating effects on other components of the MetS are discussed. While the in vivo reports on the effectiveness of antihypertensive peptides against MetS are encouraging, the exact mechanism by which these peptides infer their effects on glucose and lipid handling is mostly unknown. Therefore, careful design of experiments along with standardized physiological models to study the effect of antihypertensive peptides on insulin resistance and obesity could help to clarify this relationship.
Asunto(s)
Antihipertensivos/uso terapéutico , Hipertensión/tratamiento farmacológico , Síndrome Metabólico/tratamiento farmacológico , Péptidos/uso terapéutico , Animales , Antihipertensivos/farmacología , Humanos , Hipertensión/complicaciones , Hipertensión/metabolismo , Hipertensión/fisiopatología , Síndrome Metabólico/complicaciones , Síndrome Metabólico/metabolismo , Síndrome Metabólico/fisiopatología , Péptidos/farmacología , Sistema Renina-Angiotensina/efectos de los fármacosRESUMEN
There is great interest in developing naturally derived compounds, especially bioactive peptides with potential insulin sensitizing effects and/or preventing insulin resistance. Previously, we showed adipogenic and insulin mimetic actions of IPP (Ile-Pro-Pro) and VPP (Val-Pro-Pro), the milk-derived tripeptides on cultured preadipocytes, in addition to their previously characterized antihypertensive and anti-inflammatory functions. However, the effect of these peptides on insulin signaling is not known. Therefore, we examined IPP and VPP effects on insulin signaling in preadipocytes, a well-established model for studying insulin signaling. Our results suggested both peptides enhanced insulin signaling and contributed toward the prevention of insulin resistance in the presence of tumor necrosis factor (TNF). Inhibition of inflammatory mediator NF-kB under TNF stimulation was a likely contributor to the prevention of insulin resistance. VPP further enhanced the expression of glucose transporter 4 (GLUT4) in adipocytes and restored glucose uptake in TNF-treated adipocytes. Our data suggested the potential of these peptides in the management of conditions associated with impairments in insulin signaling.
Asunto(s)
Adipocitos/efectos de los fármacos , Resistencia a la Insulina , Leche/química , Oligopéptidos/farmacología , Adipocitos/citología , Adipocitos/metabolismo , Adipogénesis/efectos de los fármacos , Animales , Bovinos , Glucosa/metabolismo , Transportador de Glucosa de Tipo 4/genética , Transportador de Glucosa de Tipo 4/metabolismo , Insulina/metabolismo , Ratones , FN-kappa B/genética , FN-kappa B/metabolismo , Células 3T3 NIH , Factor de Necrosis Tumoral alfa/genética , Factor de Necrosis Tumoral alfa/metabolismoRESUMEN
The hen's egg is an important protein source of human diet. On average one large egg contains ~6g protein, which contributes to ~11% of daily protein intake. As a high-quality protein, egg proteins are well recognized as excellent sources of bioactive peptides. The objectives of this chapter are to introduce generation, bioactivities, and absorption of egg protein-derived bioactive peptides. Research on egg protein-derived bioactive peptides has been progressed during the past decades. Enzymatic hydrolysis is the major technique to prepare bioactive peptides from egg protein. Quantitative structure-activity relationships-aided in silico prediction is increasingly applied as a promising tool for efficient prediction of novel bioactive peptides. A number of bioactive peptides from egg proteins have been characterized for antioxidant, immunomodulatory, antihypertensive, antidiabetic, anticancer, and antimicrobial activities. Egg protein-derived peptides that can improve bone health have been reported as well. However, molecular mechanisms of many peptides are not fully understood. The stability and absorption routes, bioavailability, safety, and production of bioactive peptides await further investigation.
Asunto(s)
Proteínas del Huevo/química , Huevos/análisis , Péptidos/química , Péptidos/farmacología , Secuencia de Aminoácidos , Animales , Simulación por Computador , Humanos , Relación Estructura-ActividadRESUMEN
Egg proteins are a good source of bioactive peptides. Previous work from our research group has demonstrated the potential of egg white hydrolysate (EWH) for enhancing adipogenic differentiation and insulin signalling in 3T3-F442A pre-adipocytes. EWH was prepared by a combination of thermolysin and pepsin. Here, in this study, we aimed to identify the responsible peptide(s) in EWH. EWH was fractionated stepwise by ultrafiltration, C18 Sep-Pack cartridge, cation-exchange chromatography, and reverse-phase chromatography. The two most active fractions were analyzed by LC-MS/MS and 42 peptides were identified. Eleven peptides were synthesized and WEKAFKDED, QAMPFRVTEQE, ERYPIL, and VFKGL from ovalbumin were validated with peroxisome proliferator-associated receptor gamma stimulatory activity in adipocytes. For the first time, adipogenic differentiating peptides were characterized from egg white proteins. This data is pivotal for future structure-function studies of adipogenic peptides.
Asunto(s)
Adipocitos/efectos de los fármacos , Adipogénesis/efectos de los fármacos , Proteínas del Huevo/farmacología , Clara de Huevo/química , Péptidos/farmacología , Adipocitos/metabolismo , Animales , Diferenciación Celular/efectos de los fármacos , Línea Celular , Cromatografía por Intercambio Iónico/métodos , Cromatografía Liquida , Cromatografía de Fase Inversa/métodos , Proteínas del Huevo/química , Proteínas del Huevo/aislamiento & purificación , Hidrólisis , Ratones , Ovalbúmina/química , PPAR gamma/metabolismo , Péptidos/química , Péptidos/aislamiento & purificación , Espectrometría de Masas en Tándem , Termolisina/química , UltrafiltraciónRESUMEN
Insulin resistance and inflammation in adipose tissue is a key mechanism underlying metabolic syndrome, a growing health problem characterized by diabetes, obesity and hypertension. Previous work from our research group has demonstrated the potential of egg white ovotransferrin derived bioactive peptides against hypertension, oxidative stress and inflammation in vitro and in vivo. Egg white hydrolysate (EWH) has also shown anti-hypertensive effects in spontaneously hypertensive rats. Given the interplay among hypertension, inflammation, oxidative stress and metabolic syndrome, the objective of the study was to test the EWH on differentiation, insulin signaling and inflammatory responses in 3T3-F442A pre-adipocytes. Our study suggested that EWH could promote adipocyte differentiation as shown by increased lipid accumulation, increased release of adiponectin and upregulation of peroxisome proliferator associated receptor gamma (PPARγ) and CCAAT/ enhancer binding protein alpha (C/EBP-α). In addition to enhanced insulin effects on the upregulation of protein kinase B/Akt phosphorylation, EWH treatment increased extracellular signal regulated kinase 1/2 (ERK1/2) phosphorylation to a level similar to that of insulin, indicating insulin sensitizing and mimetic properties of the EWH. EWH further attenuated cytokine induced inflammatory marker; cyclooxygenase -2 (COX-2) by 48.78%, possibly through the AP-1 pathway by down regulating c-Jun phosphorylation in adipocytes. Given the critical role of adipose in the pathogenesis of insulin resistance and metabolic syndrome, EWH may have potential applications in the prevention and management of metabolic syndrome and its complications.
Asunto(s)
Adipocitos/metabolismo , Clara de Huevo , Insulina/metabolismo , Imitación Molecular , Células 3T3 , Adipocitos/citología , Adiponectina/metabolismo , Animales , Western Blotting , Diferenciación Celular , Relación Dosis-Respuesta a Droga , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Ratones , PPAR gamma/metabolismo , Fosforilación , Receptor de Insulina/metabolismo , Transducción de Señal , Regulación hacia ArribaRESUMEN
Oxygen radical absorbance capacity (ORAC) is a widely used method of measuring antioxidant capacities of various antioxidant components. Surprisingly, 16 antioxidant peptides previously identified from egg protein ovotransferrin using the ORAC method did not show any anti-inflammatory and antioxidant activities in cells. After simulated gastro-intestinal digestion (GID), several peptide digests significantly reduced the expression of tumor necrosis factor-α (TNF-α)-induced pro-inflammatory intercellular cell adhesion molecule-1 (ICAM-1) by 65.7 ± 10.4% and vascular cell adhesion molecule-1 (VCAM-1) by 53.5 ± 9.6% to 61.0 ± 14.5%, but only GWNI reduced TNF-α-activated superoxide generation by 71.0 ± 12.9% when tested with dihydroethidium (DHE) assay. Mass spectrometer analysis identified two new peptides, GWN and GW, in the GWNI digest; however, only GW reduced TNF-α-induced VCAM-1 expression (64.3 ± 20.6%) significantly compared to the TNF-α treated cells. Our study suggested that ORAC lacked biological relevance in assessing bioactive peptides.
Asunto(s)
Antiinflamatorios/farmacología , Antioxidantes/farmacología , Conalbúmina/química , Péptidos/farmacología , Antiinflamatorios/química , Antioxidantes/química , Células Endoteliales/efectos de los fármacos , Células Endoteliales/metabolismo , Humanos , Molécula 1 de Adhesión Intercelular/genética , Molécula 1 de Adhesión Intercelular/metabolismo , Péptidos/química , Especies Reactivas de Oxígeno/metabolismo , Factor de Necrosis Tumoral alfa/genética , Factor de Necrosis Tumoral alfa/metabolismo , Molécula 1 de Adhesión Celular Vascular/genética , Molécula 1 de Adhesión Celular Vascular/metabolismoRESUMEN
BACKGROUND: We have previously characterized several antihypertensive peptides in simulated digests of cooked eggs and showed blood pressure lowering property of fried whole egg digest. However, the long-term effects of this hydrolysate and its fractions on blood pressure are not known. Therefore, the objectives of the study were to determine the effects of long term administration of fried whole egg hydrolysate and its fractions (i.e. egg white and egg yolk) on regulation of blood pressure and associated factors in cardiovascular disease such as plasma lipid profile and tissue oxidative stress. METHODS AND RESULTS: We used spontaneously hypertensive rats (SHR), an animal model of essential hypertension. Hydrolysates of fried egg and its fractions were prepared by simulated gastro-intestinal digestion with pepsin and pancreatin. 16-17 week old male SHRs were orally administered fried whole egg hydrolysate, non-hydrolyzed fried whole egg, egg white hydrolysate or egg yolk hydrolysates (either defatted, or not) daily for 18 days. Blood pressure (BP) and heart rate were monitored by telemetry. Animals were sacrificed at the end of the treatment for vascular function studies and evaluating plasma lipid profile and tissue oxidative stress. BP was reduced by feeding fried whole egg hydrolysate but not by the non-hydrolyzed product suggesting a critical role for in vitro digestion in releasing anti-hypertensive peptides. Egg white hydrolysate and defatted egg yolk hydrolysate (but not egg yolk hydrolysate) also had similar effects. Reduction in BP was accompanied by the restoration of nitric oxide (NO) dependent vasorelaxation and reduction of plasma angiotensin II. Fried whole egg hydrolysate also reduced plasma levels of triglyceride although it was increased by the non-hydrolyzed sample. Additionally the hydrolyzed preparations attenuated tissue oxidative stress. CONCLUSION: Our results demonstrate that fried egg hydrolysates exert anti-hypertensive effects, improve plasma lipid profile and attenuate tissue oxidative stress in vivo.
Asunto(s)
Presión Sanguínea/efectos de los fármacos , Hipertensión/dietoterapia , Estrés Oxidativo/efectos de los fármacos , Hidrolisados de Proteína/administración & dosificación , Angiotensina II/sangre , Animales , Clara de Huevo , Hipertensión Esencial , Humanos , Hipertensión/sangre , Hipertensión/patología , Óxido Nítrico/metabolismo , Ratas , Ratas Endogámicas SHRRESUMEN
Chronic diseases such as atherosclerosis and cancer are now the leading causes of morbidity and mortality worldwide. Inflammatory processes and oxidative stress underlie the pathogenesis of these pathological conditions. Bioactive peptides derived from food proteins have been evaluated for various beneficial effects, including anti-inflammatory and antioxidant properties. In this review, we summarize the roles of various food-derived bioactive peptides in inflammation and oxidative stress and discuss the potential benefits and limitations of using these compounds against the burden of chronic diseases.