Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 121
Filtrar
1.
Glia ; 2024 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-39344832

RESUMEN

The molecules that constitute myelin are critical for the integrity of axon/myelin-units and thus speed and precision of impulse propagation. In the CNS, the protein composition of oligodendrocyte-derived myelin has evolutionarily diverged and differs from that in the PNS. Here, we hypothesized that the CNS myelin proteome also displays variations within the same species. We thus used quantitative mass spectrometry to compare myelin purified from mouse brains at three developmental timepoints, from brains of male and female mice, and from four CNS regions. We find that most structural myelin proteins are of approximately similar abundance across all tested conditions. However, the abundance of multiple other proteins differs markedly over time, implying that the myelin proteome matures between P18 and P75 and then remains relatively constant until at least 6 months of age. Myelin maturation involves a decrease of cytoskeleton-associated proteins involved in sheath growth and wrapping, along with an increase of all subunits of the septin filament that stabilizes mature myelin, and of multiple other proteins which potentially exert protective functions. Among the latter, quinoid dihydropteridine reductase (QDPR) emerges as a highly specific marker for mature oligodendrocytes and myelin. Conversely, female and male mice display essentially similar myelin proteomes. Across the four CNS regions analyzed, we note that spinal cord myelin exhibits a comparatively high abundance of HCN2-channels, required for particularly long sheaths. These findings show that CNS myelination involves developmental maturation of myelin protein composition, and regional differences, but absence of evidence for sexual dimorphism.

2.
Nat Neurosci ; 27(10): 1934-1944, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39251890

RESUMEN

Brain function requires a constant supply of glucose. However, the brain has no known energy stores, except for glycogen granules in astrocytes. In the present study, we report that continuous oligodendroglial lipid metabolism provides an energy reserve in white matter tracts. In the isolated optic nerve from young adult mice of both sexes, oligodendrocytes survive glucose deprivation better than astrocytes. Under low glucose, both axonal ATP levels and action potentials become dependent on fatty acid ß-oxidation. Importantly, ongoing oligodendroglial lipid degradation feeds rapidly into white matter energy metabolism. Although not supporting high-frequency spiking, fatty acid ß-oxidation in mitochondria and oligodendroglial peroxisomes protects axons from conduction blocks when glucose is limiting. Disruption of the glucose transporter GLUT1 expression in oligodendrocytes of adult mice perturbs myelin homeostasis in vivo and causes gradual demyelination without behavioral signs. This further suggests that the imbalance of myelin synthesis and degradation can underlie myelin thinning in aging and disease.


Asunto(s)
Metabolismo Energético , Ácidos Grasos , Oligodendroglía , Animales , Oligodendroglía/metabolismo , Metabolismo Energético/fisiología , Ratones , Ácidos Grasos/metabolismo , Masculino , Femenino , Glucosa/metabolismo , Ratones Endogámicos C57BL , Vaina de Mielina/metabolismo , Transportador de Glucosa de Tipo 1/metabolismo , Nervio Óptico/metabolismo , Metabolismo de los Lípidos/fisiología , Potenciales de Acción/fisiología , Adenosina Trifosfato/metabolismo , Astrocitos/metabolismo , Mitocondrias/metabolismo , Ratones Transgénicos , Sistema Nervioso Central/metabolismo , Sustancia Blanca/metabolismo
4.
Circ Res ; 135(5): 554-574, 2024 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-39011635

RESUMEN

BACKGROUND: Cardiac hypertrophy compensates for increased biomechanical stress of the heart induced by prevalent cardiovascular pathologies but can result in heart failure if left untreated. Here, we hypothesized that the membrane fusion and repair protein dysferlin is critical for the integrity of the transverse-axial tubule (TAT) network inside cardiomyocytes and contributes to the proliferation of TAT endomembranes during pressure overload-induced cardiac hypertrophy. METHODS: Stimulated emission depletion and electron microscopy were used to localize dysferlin in mouse and human cardiomyocytes. Data-independent acquisition mass spectrometry revealed the cardiac dysferlin interactome and proteomic changes of the heart in dysferlin-knockout mice. After transverse aortic constriction, we compared the hypertrophic response of wild-type versus dysferlin-knockout hearts and studied TAT network remodeling mechanisms inside cardiomyocytes by live-cell membrane imaging. RESULTS: We localized dysferlin in a vesicular compartment in nanometric proximity to contact sites of the TAT network with the sarcoplasmic reticulum, a.k.a. junctional complexes for Ca2+-induced Ca2+ release. Interactome analyses demonstrated a novel protein interaction of dysferlin with the membrane-tethering sarcoplasmic reticulum protein juncophilin-2, a putative interactor of L-type Ca2+ channels and ryanodine receptor Ca2+ release channels in junctional complexes. Although the dysferlin-knockout caused a mild progressive phenotype of dilated cardiomyopathy, global proteome analysis revealed changes preceding systolic failure. Following transverse aortic constriction, dysferlin protein expression was significantly increased in hypertrophied wild-type myocardium, while dysferlin-knockout animals presented markedly reduced left-ventricular hypertrophy. Live-cell membrane imaging showed a profound reorganization of the TAT network in wild-type left-ventricular myocytes after transverse aortic constriction with robust proliferation of axial tubules, which critically depended on the increased expression of dysferlin within newly emerging tubule components. CONCLUSIONS: Dysferlin represents a new molecular target in cardiac disease that protects the integrity of tubule-sarcoplasmic reticulum junctional complexes for regulated excitation-contraction coupling and controls TAT network reorganization and tubular membrane proliferation in cardiomyocyte hypertrophy induced by pressure overload.


Asunto(s)
Cardiomegalia , Disferlina , Ratones Noqueados , Miocitos Cardíacos , Retículo Sarcoplasmático , Animales , Disferlina/metabolismo , Disferlina/genética , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/patología , Cardiomegalia/metabolismo , Cardiomegalia/patología , Cardiomegalia/genética , Cardiomegalia/fisiopatología , Humanos , Ratones , Retículo Sarcoplasmático/metabolismo , Retículo Sarcoplasmático/patología , Ratones Endogámicos C57BL , Masculino , Proteínas de la Membrana/metabolismo , Proteínas de la Membrana/genética , Proliferación Celular , Células Cultivadas , Proteínas Musculares/metabolismo , Proteínas Musculares/genética , Quinasa de Cadena Ligera de Miosina
5.
Neuropathol Appl Neurobiol ; 50(3): e12991, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38867123

RESUMEN

AIMS: The aggregation and deposition of amyloid-ß (Aß) peptides in the brain is thought to be the initial driver in the pathogenesis of Alzheimer's disease (AD). Aside from full-length Aß peptides starting with an aspartate residue in position 1, both N-terminally truncated and elongated Aß peptides are produced by various proteases from the amyloid precursor protein (APP) and have been detected in brain tissues and body fluids. Recently, we demonstrated that the particularly abundant N-terminally truncated Aß4-x peptides are generated by ADAMTS4, a secreted metalloprotease that is exclusively expressed in the oligodendrocyte cell population. In this study, we investigated whether ADAMTS4 might also be involved in the generation of N-terminally elongated Aß peptides. METHODS: We used cell-free and cell-based assays in combination with matrix-assisted laser desorption/ionisation time-of-flight mass spectrometry (MALDI-TOF) and electrochemiluminescence sandwich immunoassays to identify and quantify N-terminally elongated Aß peptide variants. Antibodies against these Aß variants were characterised by peptide microarrays and employed for the immunohistochemical analyses of human brain samples. RESULTS: In this study, we discovered additional ADAMTS4 cleavage sites in APP. These were located N-terminal to Asp-(1) in the Aß peptide sequence between residues Glu-(-7) and Ile-(-6) as well as Glu-(-4) and Val-(-3), resulting in the release of N-terminally elongated Aß-6-x and Aß-3-x peptides, of which the latter serve as a component in a promising Aß-based plasma biomarker. Aß-6/-3-40 peptides were detected in supernatants of various cell lines and in the cerebrospinal fluid (CSF), and ADAMTS4 enzyme activity promoted the release of Aß-6/-3-x peptides. Furthermore, by immunohistochemistry, a subset of AD cases displayed evidence of extracellular and vascular localization of N-terminally elongated Aß-6/-3-x peptides. DISCUSSION: The current findings implicate ADAMTS4 in both the pathological process of Aß peptide aggregation and in the early detection of amyloid pathology in AD.


Asunto(s)
Proteína ADAMTS4 , Enfermedad de Alzheimer , Péptidos beta-Amiloides , Encéfalo , Humanos , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/patología , Proteína ADAMTS4/metabolismo , Péptidos beta-Amiloides/metabolismo , Encéfalo/metabolismo , Encéfalo/patología , Anciano , Masculino , Femenino , Anciano de 80 o más Años
6.
Nat Commun ; 15(1): 4879, 2024 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-38849354

RESUMEN

The mammalian neocortex comprises an enormous diversity regarding cell types, morphology, and connectivity. In this work, we discover a post-transcriptional mechanism of gene expression regulation, protein translation, as a determinant of cortical neuron identity. We find specific upregulation of protein synthesis in the progenitors of later-born neurons and show that translation rates and concomitantly protein half-lives are inherent features of cortical neuron subtypes. In a small molecule screening, we identify Ire1α as a regulator of Satb2 expression and neuronal polarity. In the developing brain, Ire1α regulates global translation rates, coordinates ribosome traffic, and the expression of eIF4A1. Furthermore, we demonstrate that the Satb2 mRNA translation requires eIF4A1 helicase activity towards its 5'-untranslated region. Altogether, we show that cortical neuron diversity is generated by mechanisms operating beyond gene transcription, with Ire1α-safeguarded proteostasis serving as an essential regulator of brain development.


Asunto(s)
Proteínas de Unión a la Región de Fijación a la Matriz , Neocórtex , Neuronas , Biosíntesis de Proteínas , Proteínas Serina-Treonina Quinasas , Animales , Neocórtex/metabolismo , Neocórtex/citología , Neocórtex/embriología , Neuronas/metabolismo , Neuronas/citología , Ratones , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Proteínas de Unión a la Región de Fijación a la Matriz/metabolismo , Proteínas de Unión a la Región de Fijación a la Matriz/genética , Factores de Transcripción/metabolismo , Factores de Transcripción/genética , Regulación del Desarrollo de la Expresión Génica , Proteostasis , Neurogénesis/genética , ARN Mensajero/metabolismo , ARN Mensajero/genética , Regiones no Traducidas 5'/genética , Ribosomas/metabolismo , Ribosomas/genética , Humanos , Endorribonucleasas/metabolismo , Endorribonucleasas/genética , Diferenciación Celular/genética
7.
Sci Adv ; 10(21): eadj8769, 2024 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-38787942

RESUMEN

Circular RNAs (circRNAs) are a large class of noncoding RNAs. Despite the identification of thousands of circular transcripts, the biological significance of most of them remains unexplored, partly because of the lack of effective methods for generating loss-of-function animal models. In this study, we focused on circTulp4, an abundant circRNA derived from the Tulp4 gene that is enriched in the brain and synaptic compartments. By creating a circTulp4-deficient mouse model, in which we mutated the splice acceptor site responsible for generating circTulp4 without affecting the linear mRNA or protein levels, we were able to conduct a comprehensive phenotypic analysis. Our results demonstrate that circTulp4 is critical in regulating neuronal and brain physiology, modulating the strength of excitatory neurotransmission and sensitivity to aversive stimuli. This study provides evidence that circRNAs can regulate biologically relevant functions in neurons, with modulatory effects at multiple levels of the phenotype, establishing a proof of principle for the regulatory role of circRNAs in neural processes.


Asunto(s)
Encéfalo , ARN Circular , Transmisión Sináptica , ARN Circular/genética , Animales , Ratones , Encéfalo/metabolismo , Encéfalo/fisiología , Ratones Noqueados , Neuronas/metabolismo , Neuronas/fisiología
8.
Front Mol Neurosci ; 17: 1308466, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38481472

RESUMEN

Adaptation of photoreceptor sensitivity to varying light intensities is a fundamental requirement for retinal function and vision. Adaptive mechanisms in signal transduction are well described, but little is known about the mechanisms that adapt the photoreceptor synapse to changing light intensities. The SNARE complex regulators Complexin 3 and Complexin 4 have been proposed to be involved in synaptic light adaptation by limiting synaptic vesicle recruitment and fusion. How this Complexin effect is exerted is unknown. Focusing on rod photoreceptors, we established Complexin 4 as the predominant Complexin in the light-dependent regulation of neurotransmitter release. The number of readily releasable synaptic vesicles is significantly smaller in light than in dark at wildtype compared to Complexin 4 deficient rod photoreceptor ribbon synapses. Electrophysiology indicates that Complexin 4 reduces or clamps Ca2+-dependent sustained synaptic vesicle release, thereby enhancing light signaling at the synapse. Complexin 4 deficiency increased synaptic vesicle release and desensitized light signaling. In a quantitative proteomic screen, we identified Transducin as an interactor of the Complexin 4-SNARE complex. Our results provide evidence for a presynaptic interplay of both Complexin 4 and Transducin with the SNARE complex, an interplay that may facilitate the adaptation of synaptic transmission to light at rod photoreceptor ribbon synapses.

10.
Biol Psychiatry ; 96(10): 815-828, 2024 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-38154503

RESUMEN

BACKGROUND: Neuroligin-3 is a postsynaptic adhesion molecule involved in synapse development and function. It is implicated in rare, monogenic forms of autism, and its shedding is critical to the tumor microenvironment of gliomas. While other members of the neuroligin family exhibit synapse-type specificity in localization and function through distinct interactions with postsynaptic scaffold proteins, the specificity of neuroligin-3 synaptic localization remains largely unknown. METHODS: We investigated the synaptic localization of neuroligin-3 across regions in mouse and human brain samples after validating antibody specificity in knockout animals. We raised a phospho-specific neuroligin antibody and used phosphoproteomics, cell-based assays, and in utero CRISPR/Cas9 (clustered regularly interspaced short palindromic repeats/Cas9) knockout and gene replacement to identify mechanisms that regulate neuroligin-3 localization to distinct synapse types. RESULTS: Neuroligin-3 exhibits region-dependent synapse specificity, largely localizing to excitatory synapses in cortical regions and inhibitory synapses in subcortical regions of the brain in both mice and humans. We identified specific phosphorylation of cortical neuroligin-3 at a key binding site for recruitment to inhibitory synapses, while subcortical neuroligin-3 remained unphosphorylated. In vitro, phosphomimetic mutation of that site disrupted neuroligin-3 association with the inhibitory postsynaptic scaffolding protein gephyrin. In vivo, phosphomimetic mutants of neuroligin-3 localized to excitatory postsynapses, while phospho-null mutants localized to inhibitory postsynapses. CONCLUSIONS: These data reveal an unexpected region-specific pattern of neuroligin-3 synapse specificity, as well as a phosphorylation-dependent mechanism that regulates its recruitment to either excitatory or inhibitory synapses. These findings add to our understanding of how neuroligin-3 is involved in conditions that may affect the balance of excitation and inhibition.


Asunto(s)
Moléculas de Adhesión Celular Neuronal , Proteínas de la Membrana , Proteínas del Tejido Nervioso , Sinapsis , Moléculas de Adhesión Celular Neuronal/metabolismo , Moléculas de Adhesión Celular Neuronal/genética , Animales , Sinapsis/metabolismo , Humanos , Fosforilación , Proteínas de la Membrana/metabolismo , Proteínas de la Membrana/genética , Proteínas del Tejido Nervioso/metabolismo , Proteínas del Tejido Nervioso/genética , Ratones , Ratones Noqueados , Encéfalo/metabolismo , Femenino , Masculino , Ratones Endogámicos C57BL
11.
J Cell Biol ; 223(1)2024 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-38032389

RESUMEN

Nedd4-2 is an E3 ubiquitin ligase in which missense mutation is related to familial epilepsy, indicating its critical role in regulating neuronal network activity. However, Nedd4-2 substrates involved in neuronal network function have yet to be identified. Using mouse lines lacking Nedd4-1 and Nedd4-2, we identified astrocytic channel proteins inwardly rectifying K+ channel 4.1 (Kir4.1) and Connexin43 as Nedd4-2 substrates. We found that the expression of Kir4.1 and Connexin43 is increased upon conditional deletion of Nedd4-2 in astrocytes, leading to an elevation of astrocytic membrane ion permeability and gap junction activity, with a consequent reduction of γ-oscillatory neuronal network activity. Interestingly, our biochemical data demonstrate that missense mutations found in familial epileptic patients produce gain-of-function of the Nedd4-2 gene product. Our data reveal a process of coordinated astrocytic ion channel proteostasis that controls astrocyte function and astrocyte-dependent neuronal network activity and elucidate a potential mechanism by which aberrant Nedd4-2 function leads to epilepsy.


Asunto(s)
Astrocitos , Permeabilidad de la Membrana Celular , Conexina 43 , Ubiquitina-Proteína Ligasas Nedd4 , Canales de Potasio de Rectificación Interna , Animales , Humanos , Ratones , Conexina 43/genética , Mutación Missense , Proteostasis , Canales de Potasio de Rectificación Interna/genética , Ubiquitina-Proteína Ligasas Nedd4/genética , Epilepsia
12.
Life (Basel) ; 13(4)2023 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-37109582

RESUMEN

Senile plaques consisting of amyloid-beta (Aß) peptides are a major pathological hallmark of Alzheimer's disease (AD). Aß peptides are heterogeneous regarding the exact length of their amino- and carboxy-termini. Aß1-40 and Aß1-42 are often considered to represent canonical "full-length" Aß species. Using immunohistochemistry, we analyzed the distribution of Aß1-x, Aßx-42 and Aß4-x species in amyloid deposits in the subiculum, hippocampus and cortex in 5XFAD mice during aging. Overall plaque load increased in all three brain regions, with the subiculum being the area with the strongest relative plaque coverage. In the subiculum, but not in the other brain regions, the Aß1-x load peaked at an age of five months and decreased thereafter. In contrast, the density of plaques positive for N-terminally truncated Aß4-x species increased continuously over time. We hypothesize that ongoing plaque remodeling takes place, leading to a conversion of deposited Aß1-x peptides into Aß4-x peptides in brain regions with a high Aß plaque burden.

13.
Alzheimers Dement ; 19(11): 4828-4840, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37023079

RESUMEN

INTRODUCTION: Extracellular vesicles (EVs) may propagate and modulate Alzheimer's disease (AD) pathology. We aimed to comprehensively characterize the proteome of cerebrospinal fluid (CSF) EVs to identify proteins and pathways altered in AD. METHODS: CSF EVs were isolated by ultracentrifugation (Cohort 1) or Vn96 peptide (Cohort 2) from non-neurodegenerative controls (n = 15, 16) and AD patients (n = 22, 20, respectively). EVs were subjected to untargeted quantitative mass spectrometry-based proteomics. Results were validated by enzyme-linked immunosorbent assay (ELISA) in Cohorts 3 and 4, consisting of controls (n = 16, n = 43, (Cohort3, Cohort4)), and patients with AD (n = 24, n = 100). RESULTS: We found > 30 differentially expressed proteins in AD CSF EVs involved in immune-regulation. Increase of C1q levels in AD compared to non-demented controls was validated by ELISA (∼ 1.5 fold, p (Cohort 3) = 0.03, p (Cohort 4) = 0.005). DISCUSSION: EVs may be utilized as a potential biomarker and may play a so far unprecedented role in immune-regulation in AD.


Asunto(s)
Enfermedad de Alzheimer , Disfunción Cognitiva , Vesículas Extracelulares , Humanos , Enfermedad de Alzheimer/patología , Complemento C1q , Proteómica , Péptidos beta-Amiloides/metabolismo , Fragmentos de Péptidos/líquido cefalorraquídeo , Biomarcadores/líquido cefalorraquídeo , Vesículas Extracelulares/metabolismo , Proteínas tau/líquido cefalorraquídeo , Disfunción Cognitiva/líquido cefalorraquídeo
14.
J Am Soc Mass Spectrom ; 34(3): 505-512, 2023 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-36706152

RESUMEN

Amyloid-ß (Aß) peptides, including post-translationally modified variants thereof, are believed to play a key role in the onset and progression of Alzheimer's disease. Suggested modified Aß species with potential disease relevance include Aß peptides phosphorylated at serine in position eight (pSer8-Aß) or 26 (pSer26-Aß). However, the published studies on those Aß peptides essentially relied on antibody-based approaches. Thus, complementary analyses by mass spectrometry, as shown for other modified Aß variants, will be necessary not only to unambiguously verify the existence of phosphorylated Aß species in brain samples but also to reveal their exact identity as to phosphorylation sites and potential terminal truncations. With the aim of providing a novel tool for addressing this still-unresolved issue, we developed a customized matrix formulation, referred to as TOPAC, that allows for improved detection of synthetic phosphorylated Aß species by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. When TOPAC was compared with standard matrices, we observed higher signal intensities but minimal methionine oxidation and phosphate loss for intact pSer8-Aß(1-40) and pSer26-Aß(1-40). Similarly, TOPAC also improved the mass spectrometric detection and sequencing of the proteolytic cleavage products pSer8-Aß(1-16) and pSer26-Aß(17-28). We expect that TOPAC will facilitate future efforts to detect and characterize endogenous phosphorylated Aß species in biological samples and that it may also find its use in phospho-proteomic approaches apart from applications in the Aß field.


Asunto(s)
Enfermedad de Alzheimer , Péptidos beta-Amiloides , Humanos , Péptidos beta-Amiloides/química , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción/métodos , Proteómica , Encéfalo/metabolismo
15.
Fluids Barriers CNS ; 19(1): 96, 2022 Dec 03.
Artículo en Inglés | MEDLINE | ID: mdl-36461122

RESUMEN

BACKGROUND: A reduced amyloid-ß (Aß)42/40 peptide ratio in blood plasma represents a peripheral biomarker of the cerebral amyloid pathology observed in Alzheimer's disease brains. The magnitude of the measurable effect in plasma is smaller than in cerebrospinal fluid, presumably due to dilution by Aß peptides originating from peripheral sources. We hypothesized that the observable effect in plasma can be accentuated to some extent by specifically measuring Aß1-42 and Aß1-40 instead of AßX-42 and AßX-40. METHODS: We assessed the plasma AßX-42/X-40 and Aß1-42/1-40 ratios in an idealized clinical sample by semi-automated Aß immunoprecipitation followed by closely related sandwich immunoassays. The amyloid-positive and amyloid-negative groups (dichotomized according to Aß42/40 in cerebrospinal fluid) were compared regarding the median difference, mean difference, standardized effect size (Cohen's d) and receiver operating characteristic curves. For statistical evaluation, we applied bootstrapping. RESULTS: The median Aß1-42/1-40 ratio was 20.86% lower in amyloid-positive subjects than in the amyloid-negative group, while the median AßX-42/X-40 ratio was only 15.56% lower. The relative mean difference between amyloid-positive and amyloid-negative subjects was -18.34% for plasma Aß1-42/1-40 compared to -15.50% for AßX-42/X-40. Cohen's d was 1.73 for Aß1-42/1-40 and 1.48 for plasma AßX-42/X-40. Unadjusted p-values < 0.05 were obtained after .632 bootstrapping for all three parameters. Receiver operating characteristic analysis indicated very similar areas under the curves for plasma Aß1-42/1-40 and AßX-42/X-40. CONCLUSIONS: Our findings support the hypothesis that the relatively small difference in the plasma Aß42/40 ratio between subjects with and without evidence of brain amyloidosis can be accentuated by specifically measuring Aß1-42/1-40 instead of AßX-42/X-40. A simplified theoretical model explaining this observation is presented.


Asunto(s)
Enfermedad de Alzheimer , Humanos , Plasma , Biomarcadores , Curva ROC , Encéfalo
16.
Sci Adv ; 8(37): eabo7639, 2022 09 16.
Artículo en Inglés | MEDLINE | ID: mdl-36112685

RESUMEN

To maintain homeostasis, the body, including the brain, reprograms its metabolism in response to altered nutrition or disease. However, the consequences of these challenges for the energy metabolism of the different brain cell types remain unknown. Here, we generated a proteome atlas of the major central nervous system (CNS) cell types from young and adult mice, after feeding the therapeutically relevant low-carbohydrate, high-fat ketogenic diet (KD) and during neuroinflammation. Under steady-state conditions, CNS cell types prefer distinct modes of energy metabolism. Unexpectedly, the comparison with KD revealed distinct cell type-specific strategies to manage the altered availability of energy metabolites. Astrocytes and neurons but not oligodendrocytes demonstrated metabolic plasticity. Moreover, inflammatory demyelinating disease changed the neuronal metabolic signature in a similar direction as KD. Together, these findings highlight the importance of the metabolic cross-talk between CNS cells and between the periphery and the brain to manage altered nutrition and neurological disease.


Asunto(s)
Encéfalo , Dieta Cetogénica , Animales , Encéfalo/metabolismo , Carbohidratos , Cuerpos Cetónicos/metabolismo , Ratones , Proteoma/metabolismo
17.
Elife ; 112022 05 11.
Artículo en Inglés | MEDLINE | ID: mdl-35543322

RESUMEN

Human myelin disorders are commonly studied in mouse models. Since both clades evolutionarily diverged approximately 85 million years ago, it is critical to know to what extent the myelin protein composition has remained similar. Here, we use quantitative proteomics to analyze myelin purified from human white matter and find that the relative abundance of the structural myelin proteins PLP, MBP, CNP, and SEPTIN8 correlates well with that in C57Bl/6N mice. Conversely, multiple other proteins were identified exclusively or predominantly in human or mouse myelin. This is exemplified by peripheral myelin protein 2 (PMP2), which was specific to human central nervous system myelin, while tetraspanin-2 (TSPAN2) and connexin-29 (CX29/GJC3) were confined to mouse myelin. Assessing published scRNA-seq-datasets, human and mouse oligodendrocytes display well-correlating transcriptome profiles but divergent expression of distinct genes, including Pmp2, Tspan2, and Gjc3. A searchable web interface is accessible via www.mpinat.mpg.de/myelin. Species-dependent diversity of oligodendroglial mRNA expression and myelin protein composition can be informative when translating from mouse models to humans.


Like the electrical wires in our homes, the processes of nerve cells ­ the axons, thin extensions that project from the cell bodies ­ need to be insulated to work effectively. This insulation takes the form of layers of a membrane called myelin, which is made of proteins and fats and produced by specialized cells called oligodendrocytes in the brain and the spinal cord. If this layer of insulation becomes damaged, the electrical impulses travelling along the nerves slow down, affecting the ability to walk, speak, see or think. This is the cause of several illnesses, including multiple sclerosis and a group of rare genetic diseases known as leukodystrophies. A lot of the research into myelin, oligodendrocytes and the diseases caused by myelin damage uses mice as an experimental model for humans. Using mice for this type of research is appropriate because of the ethical and technical limitations of experiments on humans. This approach can be highly effective because mice and humans share a large proportion of their genes. However, there are many obvious physical differences between the two species, making it important to determine whether the results of experiments performed in mice are applicable to humans. To do this, it is necessary to understand how myelin differs between these two species at the molecular level. Gargareta, Reuschenbach, Siems, Sun et al. approached this problem by studying the proteins found in myelin isolated from the brains of people who had passed away and donated their organs for scientific research. They used a technique called mass spectrometry, which identifies molecules based on their weight, to produce a list of proteins in human myelin that could then be compared to existing data from mouse myelin. This analysis showed that myelin is very similar in both species, but some proteins only appear in humans or in mice. Gargareta, Reuschenbach, Siems, Sun et al. then compared which genes are turned on in the oligodendrocytes making the myelin. The results of this comparison reflected most of the differences and similarities seen in the myelin proteins. Despite the similarities identified by Gargareta, Reuschenbach, Siems, Sun et al., it became evident that there are unexpected differences between the myelin of humans and mice that will need to be considered when applying results from mice research to humans. To enable this endeavor, Gargareta, Reuschenbach, Siems, Sun et al. have created a searchable web interface of the proteins in myelin and the genes expressed in oligodendrocytes in the two species.


Asunto(s)
Vaina de Mielina , Proteoma , Animales , Conexinas/metabolismo , Humanos , Ratones , Ratones Endogámicos , Proteínas de la Mielina/genética , Proteínas de la Mielina/metabolismo , Proteína Proteolipídica de la Mielina , Vaina de Mielina/genética , Vaina de Mielina/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Oligodendroglía/metabolismo , Proteoma/metabolismo , Tetraspaninas/genética , Tetraspaninas/metabolismo , Transcriptoma
18.
Nat Commun ; 13(1): 1163, 2022 03 04.
Artículo en Inglés | MEDLINE | ID: mdl-35246535

RESUMEN

Myelin, the electrically insulating sheath on axons, undergoes dynamic changes over time. However, it is composed of proteins with long lifetimes. This raises the question how such a stable structure is renewed. Here, we study the integrity of myelinated tracts after experimentally preventing the formation of new myelin in the CNS of adult mice, using an inducible Mbp null allele. Oligodendrocytes survive recombination, continue to express myelin genes, but they fail to maintain compacted myelin sheaths. Using 3D electron microscopy and mass spectrometry imaging we visualize myelin-like membranes failing to incorporate adaxonally, most prominently at juxta-paranodes. Myelinoid body formation indicates degradation of existing myelin at the abaxonal side and the inner tongue of the sheath. Thinning of compact myelin and shortening of internodes result in the loss of about 50% of myelin and axonal pathology within 20 weeks post recombination. In summary, our data suggest that functional axon-myelin units require the continuous incorporation of new myelin membranes.


Asunto(s)
Vaina de Mielina , Sustancia Blanca , Animales , Axones/metabolismo , Ratones , Vaina de Mielina/metabolismo , Oligodendroglía
19.
Elife ; 112022 03 11.
Artículo en Inglés | MEDLINE | ID: mdl-35274615

RESUMEN

Oligodendrocytes facilitate rapid impulse propagation along the axons they myelinate and support their long-term integrity. However, the functional relevance of many myelin proteins has remained unknown. Here, we find that expression of the tetraspan-transmembrane protein CMTM5 (chemokine-like factor-like MARVEL-transmembrane domain containing protein 5) is highly enriched in oligodendrocytes and central nervous system (CNS) myelin. Genetic disruption of the Cmtm5 gene in oligodendrocytes of mice does not impair the development or ultrastructure of CNS myelin. However, oligodendroglial Cmtm5 deficiency causes an early-onset progressive axonopathy, which we also observe in global and tamoxifen-induced oligodendroglial Cmtm5 mutants. Presence of the WldS mutation ameliorates the axonopathy, implying a Wallerian degeneration-like pathomechanism. These results indicate that CMTM5 is involved in the function of oligodendrocytes to maintain axonal integrity rather than myelin biogenesis.


Asunto(s)
Vaina de Mielina , Oligodendroglía , Animales , Axones/fisiología , Sistema Nervioso Central/metabolismo , Ratones , Proteínas de la Mielina/genética , Vaina de Mielina/metabolismo , Oligodendroglía/metabolismo
20.
J Neurochem ; 160(5): 578-589, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34984682

RESUMEN

Neurochemical biomarkers can support the diagnosis of Alzheimer's disease and may facilitate clinical trials. In blood plasma, the ratio of the amyloid-ß (Aß) peptides Aß-3-40/Aß1-42 can predict cerebral amyloid-ß pathology with high accuracy (Nakamura et al., 2018). Whether or not Aß-3-40 (aka. amyloid precursor protein (APP) 669-711) is also present in cerebrospinal fluid (CSF) is not clear. Here, we investigated whether Aß-3-40 can be detected in CSF and to what extent the CSF Aß-3-40/Aß42 ratio is able to differentiate between individuals with or without amyloid-ß positron emission tomography (PET) evidence of brain amyloid. The occurrence of Aß-3-40 in human CSF was assessed by immunoprecipitation followed by mass spectrometry. For quantifying the CSF concentrations of Aß-3-40 in 23 amyloid PET-negative and 17 amyloid PET-positive subjects, we applied a sandwich-type immunoassay. Our findings provide clear evidence of the presence of Aß-3-40 and Aß-3-38 in human CSF. While there was no statistically significant difference in the CSF concentration of Aß-3-40 between the two diagnostic groups, the CSF Aß-3-40/Aß42 ratio was increased in the amyloid PET-positive individuals. We conclude that Aß-3-40 appears to be a regular constituent of CSF and may potentially serve to accentuate the selective decrease in CSF Aß42 in Alzheimer's disease.


Asunto(s)
Enfermedad de Alzheimer , Enfermedad de Alzheimer/líquido cefalorraquídeo , Enfermedad de Alzheimer/diagnóstico por imagen , Amiloide , Péptidos beta-Amiloides/líquido cefalorraquídeo , Biomarcadores/líquido cefalorraquídeo , Humanos , Fragmentos de Péptidos/líquido cefalorraquídeo , Tomografía de Emisión de Positrones , Proteínas tau/líquido cefalorraquídeo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...