Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Artículo en Inglés | MEDLINE | ID: mdl-38514398

RESUMEN

OBJECTIVES: Fontan failure refers to a condition in which the Fontan circulation, a surgical procedure used to treat certain congenital heart defects, becomes insufficient, leading to compromised cardiac function and potential complications. This in vitro study therefore investigates the feasibility of bladeless impedance-driven cavopulmonary assist device via dielectric elastomer actuator (DEA) as a means to address Fontan failure. METHODS: A cavopulmonary assist device, constructed using DEA technologies and employing the impedance pump concept, is subjected to in vitro testing within a closed-loop setup. This study aims to assess the device's functionality and performance under controlled conditions, providing valuable insights into its potential application as a cavopulmonary assistive technology. RESULTS: The DEA-based pump, measuring 50 mm in length and 30 mm in diameter, is capable of achieving substantial flow rates within a closed-loop setup, reaching up to 1.20 l/min at an activation frequency of 4 Hz. It also provides a broad range of working internal pressures (<10 to >20 mmHg). Lastly, the properties of the flow (direction, magnitude, etc.) can be controlled by adjusting the input signal parameters (frequency, amplitude, etc.). CONCLUSIONS: In summary, the results suggest that the valveless impedance-driven pump utilizing DEA technology is promising in the context of cavopulmonary assist devices. Further research and development in this area may lead to innovative and potentially more effective solutions for assisting the right heart, ultimately benefiting patients with heart-related health issues overall, with a particular focus on those experiencing Fontan failure.

2.
Artículo en Inglés | MEDLINE | ID: mdl-38419585

RESUMEN

OBJECTIVES: We propose an evolution of a dielectric elastomer actuator-based cardiac assist device that acts as a counterpulsation system. We introduce a new pre-stretched actuator and implant the device in a graft bypass between the ascending and descending aorta to redirect all blood through the device (ascending aorta clamped). The objective was to evaluate the influence of these changes on the assistance provided to the heart. METHODS: The novel para-aortic device and the new implantation technique were tested in vivo in 5 pigs. We monitored the pressure and flow in the aorta as well as the pressure-volume characteristics of the left ventricle. Different activation timings were tested to identify the optimal device actuation. RESULTS: The proposed device helps reducing the end-diastolic pressure in the aorta by up to 13 ± 4.0% as well as the peak systolic pressure by up to 16 ± 3.6%. The early diastolic pressure was also increased up to 10 ± 3.5%. With different activation, we also showed that the device could increase or decrease the stroke volume. CONCLUSIONS: The new setup and the novel para-aortic device presented here helped improve cardiac assistance compared to previous studies. Moreover, we revealed a new way to assist the heart by actuating the device at different starting time to modify the left ventricular stroke volume and stroke work.

3.
Soft Robot ; 11(2): 198-206, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37729065

RESUMEN

Impedance pumps are simple designs that allow the generation or amplification of flow. They are fluid-filled systems based on flexible tubing connected to tubing with different impedances. A periodic off-center compression of the flexible tubing causes the fluid to move and generate flow. Wave reflection at the impedance mismatch is the primary driving mechanism of the flow. In addition to their straightforward design, impedance pumps are bladeless, valveless, and pulsatile. These properties are highly sought after by demanding and challenging applications, such as the biomedical field, as they present less risk of damage, disruption, and obstruction when handling viscous and delicate fluids/matter. In this study, we propose a high-performance impedance-driven pumping concept with embedded actuation based on a multilayered tubular dielectric elastomer. This pumping system is made of three parts, a dielectric elastomer actuator tube, a passive tube, and a rigid ring that binds and decouples the two subsystems. The system is able to generate net fluid flow rates up to 1.35 L/min with an internal pressure of 125 mmHg. The soft simplistic design, self-contained concept, and high performances of these pumping systems could make them disruptive in many challenging meso- and macroscale applications in general and in the biomedical field in particular.

4.
APL Bioeng ; 7(4): 046120, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38125699

RESUMEN

The etiology of transcatheter heart valve thrombosis (THVT) and the relevance of the aortic root geometry on the occurrence of THVT are largely unknown. The first aim of this pilot study is to identify differences in aortic root geometry between THVT patients and patients without THVT after transcatheter aortic valve implantation (TAVI). Second, we aim to investigate how the observed difference in aortic diameters affects the aortic flow using idealized computational geometric models. Aortic dimension was assessed using pre-TAVI multi-detector computed tomography scans of eight patients with clinical apparent THVT and 16 unaffected patients (two for each THVT patient with same valve type and size) from the Bern-TAVI registry. Among patients with THVT the right coronary artery height was lower (-40%), and sinotubular junction (STJ) and ascending aorta (AAo) diameters tended to be larger (9% and 14%, respectively) compared to the unaffected patients. Fluid-structure interaction (FSI) in two idealized aortic models with the observed differences in STJ and AAo diameter showed higher backflow rate at the STJ (+16%), lower velocity magnitudes in the sinus (-5%), and higher systolic turbulent dissipation rate in the AAo (+8%) in the model with larger STJ and AAo diameters. This pilot study suggests a direct effect of the aortic dimensions on clinically apparent THVT. The FSI study indicates that larger STJ and AAo diameters potentially favor thrombus formation by increased backflow rate and reduced wash-out efficiency of the sinus. The reported observations require clinical validation but could potentially help identifying patients at risk for THVT.

5.
J Biomech ; 159: 111777, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37666100

RESUMEN

Dielectric elastomer actuator augmented aorta (DEA) represents a novel approach with high potential for assisting a failing heart. The soft tubular device replaces a section of the aorta and increases its diameter when activated. The hemodynamic interaction between the DEA and the left ventricle (LV) has not been investigated with wave intensity (WI) analysis before. The objective of this study is to investigate the hemodynamic effects of the DEA on the aortic WI pattern. WI was calculated from aortic pressure and flow measured in-vivo in the descending aorta of two pigs implanted with DEAs. The DEAs were tested for different actuation phase shifts (PS). The DEA generated two decompression waves (traveling upstream and downstream of the device) at activation followed by two compression waves at deactivation. Depending on the PS, the end-diastolic pressure (EDP) decreased by 7% (or increased by 5-6%). The average early diastolic pressure augmentation (Pdia¯) increased by 2% (or decreased by 2-3%). The hydraulic work (WH) measured in the aorta decreased by 2% (or increased by 5%). The DEA-generated waves interfered with the LV-generated waves, and the timing of the waves affected the hemodynamic effect of the device. For the best actuation timing the upstream decompression wave arrived just before aortic valve opening and the upstream compression wave arrived just before aortic valve closure leading to a decreased EDP, an increased Pdia¯ and a reduced.WH.


Asunto(s)
Aorta , Hemodinámica , Porcinos , Animales , Aorta/fisiología , Presión Sanguínea , Corazón , Presión Arterial
6.
Bioeng Transl Med ; 8(2): e10396, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36925677

RESUMEN

Although heart transplant is the preferred solution for patients suffering from heart failures, cardiac assist devices remain key substitute therapies. Among them, aortic augmentation using dielectric elastomer actuators (DEAs) might be an alternative technological application for the future. The electrically driven actuator does not require bulky pneumatic elements (such as conventional intra-aortic balloon pumps) and conforms tightly to the aorta thanks to the manufacturing method presented here. In this study, the proposed DEA-based device replaces a section of the aorta and acts as a counterpulsation device. The feasibility and validation of in vivo implantation of the device into the descending aorta in a porcine model, and the level of support provided to the heart are investigated. Additionally, the influence of the activation profile and delay compared to the start of systole is studied. We demonstrate that an activation of the DEA just before the start of systole (30 ms at 100 bpm) and deactivation just after the start of diastole (0-30 ms) leads to an optimal assistance of the heart with a maximum energy provided by the DEA. The end-diastolic and left ventricular pressures were lowered by up to 5% and 1%, respectively, compared to baseline. The early diastolic pressure was augmented in average by up to 2%.

7.
Sensors (Basel) ; 21(7)2021 Mar 24.
Artículo en Inglés | MEDLINE | ID: mdl-33804840

RESUMEN

Human motion analysis is a valuable tool for assessing disease progression in persons with conditions such as multiple sclerosis or Parkinson's disease. Human motion tracking is also used extensively for sporting technique and performance analysis as well as for work life ergonomics evaluations. Wearable inertial sensors (e.g., accelerometers, gyroscopes and/or magnetometers) are frequently employed because they are easy to mount and can be used in real life, out-of-the-lab-settings, as opposed to video-based lab setups. These distributed sensors cannot, however, measure relative distances between sensors, and are also cumbersome when it comes to calibration and drift compensation. In this study, we tested an ultrasonic time-of-flight sensor for measuring relative limb-to-limb distance, and we developed a combined inertial sensor and ultrasonic time-of-flight wearable measurement system. The aim was to investigate if ultrasonic time-of-flight sensors can supplement inertial sensor-based motion tracking by providing relative distances between inertial sensor modules. We found that the ultrasonic time-of-flight measurements reflected expected walking motion patterns. The stride length estimates derived from ultrasonic time-of-flight measurements corresponded well with estimates from validated inertial sensors, indicating that the inclusion of ultrasonic time-of-flight measurements could be a feasible approach for improving inertial sensor-only systems. Our prototype was able to measure both inertial and time-of-flight measurements simultaneously and continuously, but more work is necessary to merge the complementary approaches to provide more accurate and more detailed human motion tracking.


Asunto(s)
Ultrasonido , Caminata , Fenómenos Biomecánicos , Calibración , Humanos , Movimiento (Física)
8.
Artif Organs ; 45(1): 46-54, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-32619302

RESUMEN

Hemolysis in cardiac surgery is often related to the contact of blood with air or artificial surfaces. Variations of negative pressure in the suction cannulas may represent an additional factor. Limited data exist on the contribution of a roller pump-assisted (RPA) cardiotomy suction unit to hemolysis. Elevation of free hemoglobin (fHb) following air suction (AS) or suction tip occlusion (STO) events of a pump-assisted cardiotomy suction unit was investigated in a mock circuit filled with blood from slaughtered domestic pigs. AS-associated hemolysis was measured over 240 minutes with 2 minutes of AS occurring every 10 minutes. STO-associated hemolysis was analyzed over 80-minute periods: configuration 1 (c1) comprised a cycle of 20 minutes (min) occlusion and 60 minutes RPA flow (20/60 minutes); c2 comprised 20 cycles of 1/3 minutes; c3 comprised 40 cycles of 0.5/1.5 minutes; and c4 comprised 80 cycles of 0.25/0.75 minutes. The AS setup did not lead to significant hemolysis after 2 (P = .97), 3 (P = .40) or 4 (P = .11) hours. The STO setup showed the greatest hemolysis (ΔfHb of 30 mg/dL) in c1 after 20 minutes. ΔfHb was different in c1 from all other configurations at 20 minutes (P < .0001) and 80 minutes (P < .05). Ex vivo generation of large negative pressures by STO events is the main cause of cardiotomy suction-associated hemolysis. The clinical relevance of this mechanism needs further investigations.


Asunto(s)
Procedimientos Quirúrgicos Cardíacos/efectos adversos , Puente Cardiopulmonar/efectos adversos , Hemólisis , Succión/efectos adversos , Animales , Puente Cardiopulmonar/instrumentación , Diseño de Equipo , Hemodinámica , Succión/instrumentación , Sus scrofa
9.
Interact Cardiovasc Thorac Surg ; 27(1): 108-115, 2018 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-29481667

RESUMEN

OBJECTIVES: Bioprosthetic valve thrombosis has been considered uncommon, but recent studies have shown that it is more frequent than previously thought. Insufficient washout of the aortic sinus is believed to be a risk factor for bioprosthetic valve thrombosis. The objective of this in vitro experiment was to investigate the impact of aortic root morphology on blood flow in the aortic sinus and to relate these results to in vivo data obtained in patients with a transcatheter aortic valve implant. METHODS: Two compliant aortic root phantoms with different morphologies (symmetrical and patient-specific) were fabricated with silicone. A bioprosthetic aortic valve was inserted in both phantoms. Haemodynamic measurements were performed in a pulsatile flow-loop replicating physiological flow and pressure conditions. The flow in the aortic root was visualized by injecting contrast agent (CA). The distribution of the CA was captured by a high-speed camera, and image post-processing was performed to quantify CA distribution in the aortic sinus. The results were compared with angiographic images after a transcatheter aortic valve implant. RESULTS: Blood flow in the aortic root and the washout of the sinus portion are significantly affected by aortic root morphology. CA arrives at the aortic sinus of the 2 phantoms at 0.09 s and 0.16 s after the valve opens in the symmetrical and the patient-specific phantoms, respectively. Delayed CA arrival was also observed in the patients with a transcatheter aortic valve implant. CONCLUSIONS: Aortic root morphology affects the blood flow in the aortic sinus and may be a factor in bioprosthetic valve thrombosis. Therefore, patient-specific aortic root morphology should be considered when selecting and positioning a prosthesis.


Asunto(s)
Válvula Aórtica/patología , Bioprótesis , Prótesis Valvulares Cardíacas , Trombosis/etiología , Reemplazo de la Válvula Aórtica Transcatéter/instrumentación , Hemodinámica , Humanos , Modelos Cardiovasculares , Seno Aórtico/fisiopatología , Trombosis/patología , Trombosis/fisiopatología , Reemplazo de la Válvula Aórtica Transcatéter/efectos adversos
10.
Interact Cardiovasc Thorac Surg ; 26(2): 248-255, 2018 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-29049749

RESUMEN

OBJECTIVES: Many surgical and interventional methods are available to restore patency for patients with degenerative severe mitral valve regurgitation. Leaflet resection and neochordoplasty, which both include ring annuloplasty, are the most frequently performed techniques for the repair of posterior mitral leaflet flail. It is unclear which technique results in the best haemodynamics. In this study, we investigated the effect of different mitral valve reconstruction techniques on mitral valve haemodynamics and diastolic transvalvular pressure gradient in an ex vivo porcine model. METHODS: Eight porcine mitral valves were tested under pulsatile flow conditions in an in vitro pulsatile flow loop for haemodynamic quantification. Severe acute posterior mitral leaflet flail was created by resecting the posterior marginal chorda. The acute mitral valve regurgitation was corrected using 4 different repair techniques, in each valve, in a strictly successive order: (i) neochordoplasty with polytetrafluoroethylene sutures alone and (ii) with ring annuloplasty, (iii) edge-to-edge repair and (iv) triangular leaflet resection, both with ring annuloplasty. Valve haemodynamics were measured and quantified for all valve configurations (native, rupture and each surgical reconstruction). The results were analysed using a validated statistical linear mixed model, and the P-values were calculated using a 2-sided Wald test. RESULTS: All surgical reconstruction techniques were able to sufficiently correct the acute mitral valve regurgitation. Neochordoplasty without ring annuloplasty was the only reconstruction technique that resulted in haemodynamic properties similar to the native mitral valve (P-values from 0.071 to 0.901). The diastolic transvalvular gradient remained within the physiological range for all reconstructions but was significantly higher than in the native valve for neochordoplasty with ring annuloplasty (P < 0.000), edge-to-edge repair (P < 0.000) and leaflet resection (P < 0.000). Neochordoplasty without ring annuloplasty resulted in a significantly better pressure gradient than neochordoplasty with a ring annuloplasty (P < 0.000). Additionally, neochordoplasty with a ring annuloplasty resulted in significantly lower transvalvular pressure gradients than edge-to-edge repair (P < 0.000) and leaflet resection (P < 0.000). CONCLUSIONS: Neochordoplasty with or without ring annuloplasty was the reconstruction technique that almost achieved native physiological haemodynamics after repair of posterior mitral leaflet flail after acute isolated chordal rupture in our ex vivo porcine model.


Asunto(s)
Anuloplastia de la Válvula Mitral/métodos , Insuficiencia de la Válvula Mitral/fisiopatología , Insuficiencia de la Válvula Mitral/cirugía , Flujo Pulsátil/fisiología , Resistencia Vascular/fisiología , Animales , Presión Sanguínea/fisiología , Politetrafluoroetileno , Flujo Sanguíneo Regional/fisiología , Suturas , Porcinos
11.
J Am Soc Echocardiogr ; 30(5): 511-521, 2017 May.
Artículo en Inglés | MEDLINE | ID: mdl-28274714

RESUMEN

BACKGROUND: The accuracy of the proximal isovelocity surface area (PISA) method for the quantification of mitral regurgitation (MR), in the case of multiple jets, is unknown. The aim of this study was to evaluate different two-dimensional (2D) and three-dimensional (3D) PISA methods using 3D color Doppler data sets. METHODS: Several regurgitant volumes (Rvols) were simulated using a pulsatile pump connected to a phantom equipped with single and double regurgitant orifices of different sizes and interspaces. A flowmeter served as the reference method. Transthoracic (TTE) and transoesophageal echocardiography (TEE) were used to acquire the 3D data sets. Offline, Rvols were calculated by 2D PISA methods based on hemispheric and hemicylindric assumptions and by 3D integrated PISA. RESULTS: A fusion of the PISA was observed in the setting of narrow-spaced regurgitant orifices; compared with flowmeter, Rvol was underestimated using the single hemispheric PISA model (TTE: Bland-Altman bias ± limit of agreement, -17.5 ± 8.9 mL; TEE: -15.9 ± 7.3 mL) and overestimated using the double hemispheric PISA model (TTE: +7.1 ± 14.6 mL; TEE: +10.4 ± 11.9 mL). The combined approach (hemisphere for single orifice, hemicylinder with two bases for nonfused PISAs, and hemicylinder with one base for fused PISAs) was more precise (TTE: -3.4 ± 6.3 mL; TEE: -1.9 ± 5.6 mL). Three-dimensional integrated PISA was the most accurate method to quantify Rvol (TTE: -2.1 ± 6.5 mL; TEE -3.2 ± 4.8 mL). CONCLUSIONS: In the setting of double MR orifices, the 2D combined approach and integrated 3D PISA appear to be superior as compared with the conventional hemispheric method, thus providing tools for the challenging quantification of MR with multiple jets.


Asunto(s)
Velocidad del Flujo Sanguíneo , Ecocardiografía Doppler en Color/métodos , Ecocardiografía Tridimensional/métodos , Interpretación de Imagen Asistida por Computador/métodos , Insuficiencia de la Válvula Mitral/diagnóstico por imagen , Insuficiencia de la Válvula Mitral/fisiopatología , Ecocardiografía Doppler en Color/instrumentación , Humanos , Aumento de la Imagen/métodos , Fantasmas de Imagen , Reproducibilidad de los Resultados , Sensibilidad y Especificidad
12.
Interact Cardiovasc Thorac Surg ; 24(2): 173-180, 2017 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-27680580

RESUMEN

Objectives: In this study, the influence of aortic root distensibility on the haemodynamic parameters and valve kinematics of a bioprosthetic aortic valve was investigated in a controlled in vitro experiment. Methods: An Edwards INTUITY Elite 21 mm sutureless aortic valve (Edwards Lifesciences, Irvine, CA, USA) was inserted in three transparent aortic root phantoms with different wall thicknesses (0.55, 0.85 and 1.50 mm) mimicking different physiological distensibilities. Haemodynamic measurements were performed in an in vitro flow loop at heart rates of 60, 80 and 100 bpm with corresponding cardiac outputs of 3.5, 4.0 and 5.0 l/min and aortic pressures of 100/60, 120/90 and 145/110 mmHg, respectively. Aortic valve kinematics were assessed using a high-speed camera. The geometric orifice area (GOA) was measured by counting pixels in the lumen of the open aortic valve. The effective orifice area (EOA) was calculated from the root-mean-square value of the systolic aortic valve flow rate and the mean systolic trans-valvular pressure gradient. Results: The tested aortic root phantoms reproduce physiological distensibilities of healthy individuals in age groups ranging from 40 to 70 years (±10 years). The haemodynamic results show only minor differences between the aortic root phantoms: the trans-valvular pressure gradient tends to increase for stiffer aortic roots, whereas the systolic aortic valve flow rate remains constant. As a consequence, the EOA decreased slightly for less distensible aortic roots. The GOA and the aortic valve opening and closing velocities increase significantly with reduced distensibility for all haemodynamic measurements. The resulting mean systolic flow velocity in the aortic valve orifice is lower for the stiffer aortic root. Conclusions: Aortic root distensibility may influence GOA and aortic valve kinematics, which affects the mechanical load on the aortic valve cusps. Whether these changes have a significant effect on the onset of structural valve deterioration of bioprosthetic heart valves needs to be further investigated.


Asunto(s)
Válvula Aórtica/fisiopatología , Bioprótesis , Prótesis Valvulares Cardíacas , Rigidez Vascular/fisiología , Fenómenos Biomecánicos , Presión Sanguínea/fisiología , Gasto Cardíaco/fisiología , Hemodinámica/fisiología , Humanos , Diseño de Prótesis
13.
Am J Physiol Heart Circ Physiol ; 307(8): H1243-51, 2014 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-25320334

RESUMEN

Arterial waves are seen as possible independent mediators of cardiovascular risks, and the wave intensity analysis (WIA) has therefore been proposed as a method for patient selection for ventricular assist device (VAD) implantation. Interpreting measured wave intensity (WI) is challenging, and complexity is increased by the implantation of a VAD. The waves generated by the VAD interact with the waves generated by the native heart, and this interaction varies with changing VAD settings. Eight sheep were implanted with a pulsatile VAD (PVAD) through ventriculoaortic cannulation. The start of PVAD ejection was synchronized to the native R wave and delayed between 0 and 90% of the cardiac cycle in 10% steps or phase shifts (PS). Pressure and velocity signals were registered, with the use of a combined Doppler and pressure wire positioned in the abdominal aorta, and used to calculate the WI. Depending on the PS, different wave interference phenomena occurred. Maximum unloading of the left ventricle (LV) coincided with constructive interference and maximum blood flow pulsatility, and maximum loading of the LV coincided with destructive interference and minimum blood flow pulsatility. We believe that noninvasive WIA could potentially be used clinically to assess the mechanical load of the LV and to monitor the peripheral hemodynamics such as blood flow pulsatility and risk of intestinal bleeding.


Asunto(s)
Aorta Abdominal/fisiología , Ventrículos Cardíacos/cirugía , Corazón Auxiliar , Hemodinámica , Animales , Aorta Abdominal/diagnóstico por imagen , Procedimientos Quirúrgicos Cardíacos/instrumentación , Procedimientos Quirúrgicos Cardíacos/métodos , Femenino , Ventrículos Cardíacos/diagnóstico por imagen , Ovinos , Cirugía Asistida por Computador/métodos , Ultrasonografía , Función Ventricular
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...