Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Materials (Basel) ; 16(2)2023 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-36676489

RESUMEN

To minimize the stress shielding effect of metallic biomaterials in mimicking bone, the body-centered cubic (bcc) unit cell-based porous CoCrMo alloys with different, designed volume porosities of 20, 40, 60, and 80% were produced via a selective laser melting (SLM) process. A heat treatment process consisting of solution annealing and aging was applied to increase the volume fraction of an ε-hexagonal close-packed (hcp) structure for better mechanical response and stability. In the present study, we investigated the impact of different, designed volume porosities on the compressive mechanical properties in as-built and heat-treated CoCrMo alloys. The elastic modulus and yield strength in both conditions were dramatically decreased with increasing designed volume porosity. The elastic modulus and yield strength of the CoCrMo alloys with a designed volume porosity of 80% exhibited the closest match to those of bone tissue. Different strengthening mechanisms were quantified to determine their contributing roles to the measured yield strength in both conditions. The experimental results of the relative elastic modulus and yield strength were compared to the analytical and simulation modeling analyses. The Gibson-Ashby theoretical model was established to predict the deformation behaviors of the lattice CoCrMo structures.

2.
Materials (Basel) ; 15(4)2022 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-35207845

RESUMEN

In this study, we manufactured a non-equiatomic (CoNi)74.66Cr17Fe8C0.34 high-entropy alloy (HEA) consisting of a single-phase face-centered-cubic structure. We applied in situ neutron diffraction coupled with electron backscattered diffraction (EBSD) and transmission electron microscopy (TEM) to investigate its tensile properties, microstructural evolution, lattice strains and texture development, and the stacking fault energy. The non-equiatomic (CoNi)74.66Cr17Fe8C0.34 HEA revealed a good combination of strength and ductility in mechanical properties compared to the equiatomic CoNiCrFe HEA, due to both stable solid solution and precipitation-strengthened effects. The non-equiatomic stoichiometry resulted in not only a lower electronegativity mismatch, indicating a more stable state of solid solution, but also a higher stacking fault energy (SFE, ~50 mJ/m2) due to the higher amount of Ni and the lower amount of Cr. This higher SFE led to a more active motion of dislocations relative to mechanical twinning, resulting in severe lattice distortion near the grain boundaries and dislocation entanglement near the twin boundaries. The abrupt increase in the strain hardening rate (SHR) at the 1~3% strain during tensile deformation might be attributed to the unusual stress triaxiality in the {200} grain family. The current findings provide new perspectives for designing non-equiatomic HEAs.

3.
Indian Pacing Electrophysiol J ; 22(2): 70-76, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35101582

RESUMEN

INTRODUCTION: Cardiovascular dysautonomia comprising postural orthostatic tachycardia syndrome (POTS) and orthostatic hypotension (OH) is one of the presentations in COVID-19 recovered subjects. We aim to determine the prevalence of cardiovascular dysautonomia in post COVID-19 patients and to evaluate an Artificial Intelligence (AI) model to identify time domain heart rate variability (HRV) measures most suitable for short term ECG in these subjects. METHODS: This observational study enrolled 92 recently COVID-19 recovered subjects who underwent measurement of heart rate and blood pressure response to standing up from supine position and a 12-lead ECG recording for 60 s period during supine paced breathing. Using feature extraction, ECG features including those of HRV (RMSSD and SDNN) were obtained. An AI model was constructed with ShAP AI interpretability to determine time domain HRV features representing post COVID-19 recovered state. In addition, 120 healthy volunteers were enrolled as controls. RESULTS: Cardiovascular dysautonomia was present in 15.21% (OH:13.04%; POTS:2.17%). Patients with OH had significantly lower HRV and higher inflammatory markers. HRV (RMSSD) was significantly lower in post COVID-19 patients compared to healthy controls (13.9 ± 11.8 ms vs 19.9 ± 19.5 ms; P = 0.01) with inverse correlation between HRV and inflammatory markers. Multiple perceptron was best performing AI model with HRV(RMSSD) being the top time domain HRV feature distinguishing between COVID-19 recovered patients and healthy controls. CONCLUSION: Present study showed that cardiovascular dysautonomia is common in COVID-19 recovered subjects with a significantly lower HRV compared to healthy controls. The AI model was able to distinguish between COVID-19 recovered patients and healthy controls.

4.
Materials (Basel) ; 15(3)2022 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-35160723

RESUMEN

The present work extends the examination of selective laser melting (SLM)-fabricated 15-5 PH steel with the 8%-transient-austenite-phase towards fully-reversed strain-controlled low-cycle fatigue (LCF) test. The cyclic-deformation response and microstructural evolution were investigated via in-situ neutron-diffraction measurements. The transient-austenite-phase rapidly transformed into the martensite phase in the initial cyclic-hardening stage, followed by an almost complete martensitic transformation in the cyclic-softening and steady stage. The compressive stress was much greater than the tensile stress at the same strain amplitude. The enhanced martensitic transformation associated with lower dislocation densities under compression predominantly governed such a striking tension-compression asymmetry in the SLM-built 15-5 PH.

5.
Sci Rep ; 11(1): 9610, 2021 05 05.
Artículo en Inglés | MEDLINE | ID: mdl-33953260

RESUMEN

We demonstrated the design of pre-additive manufacturing microalloying elements in tuning the microstructure of iron (Fe)-based alloys for their tunable mechanical properties. We tailored the microalloying stoichiometry of the feedstock to control the grain sizes of the metallic alloy systems. Two specific microalloying stoichiometries were reported, namely biodegradable iron powder with 99.5% purity (BDFe) and that with 98.5% (BDFe-Mo). Compared with the BDFe, the BDFe-Mo powder was found to have lower coefficient of thermal expansion (CTE) value and better oxidation resistance during consecutive heating and cooling cycles. The selective laser melting (SLM)-built BDFe-Mo exhibited high ultimate tensile strength (UTS) of 1200 MPa and fair elongation of 13.5%, while the SLM-built BDFe alloy revealed a much lower UTS of 495 MPa and a relatively better elongation of 17.5%, indicating the strength enhancement compared with the other biodegradable systems. Such an enhanced mechanical behavior in the BDFe-Mo was assigned to the dominant mechanism of ferrite grain refinement coupled with precipitate strengthening. Our findings suggest the tunability of outstanding strength-ductility combination by tailoring the pre-additive manufacturing microalloying elements with their proper concentrations.

6.
Int J Mol Sci ; 22(9)2021 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-33924977

RESUMEN

The coaxial core/shell composite electrospun nanofibers consisting of relaxor ferroelectric P(VDF-TrFE-CTFE) and ferroelectric P(VDF-TrFE) polymers are successfully tailored towards superior structural, mechanical, and electrical properties over the individual polymers. The core/shell-TrFE/CTFE membrane discloses a more prominent mechanical anisotropy between the revolving direction (RD) and cross direction (CD) associated with a higher tensile modulus of 26.9 MPa and good strength-ductility balance, beneficial from a better degree of nanofiber alignment, the increased density, and C-F bonding. The interfacial coupling between the terpolymer P(VDF-TrFE-CTFE) and copolymer P(VDF-TrFE) is responsible for comparable full-frequency dielectric responses between the core/shell-TrFE/CTFE and pristine terpolymer. Moreover, an impressive piezoelectric coefficient up to 50.5 pm/V is achieved in the core/shell-TrFE/CTFE composite structure. Our findings corroborate the promising approach of coaxial electrospinning in efficiently tuning mechanical and electrical performances of the electrospun core/shell composite nanofiber membranes-based electroactive polymers (EAPs) actuators as artificial muscle implants.


Asunto(s)
Clorofluorocarburos/química , Hidrocarburos Fluorados/química , Nanofibras/química , Compuestos de Vinilo/química , Fenómenos Electromagnéticos
7.
J Alloys Compd ; 857: 157555, 2021 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-33071463

RESUMEN

In-situ thermal cycling neutron diffraction experiments were employed to unravel the effect of thermal history on the evolution of phase stability and internal stresses during the additive manufacturing (AM) process. While the fully-reversible martensite-austenite phase transformation was observed in the earlier thermal cycles where heating temperatures were higher than Af, the subsequent damped thermal cycles exhibited irreversible phase transformation forming reverted austenite. With increasing number of thermal cycles, the thermal stability of the retained austenite increased, which decreased the coefficient of thermal expansion. However, martensite revealed higher compressive residual stresses and lower dislocation density, indicating inhomogeneous distributions of the residual stresses and microstructures on the inside and on the surface of the AM component. The compressive residual stresses that acted on the martensite resulted preferentially from transformation strain and additionally from thermal misfit strain, and the decrease in the dislocation density might have been due to the strong recovery effect near the Ac1 temperature.

8.
Artículo en Inglés | MEDLINE | ID: mdl-36733666

RESUMEN

Stress relaxation during plastic deformation has been reported to improve ductility of metallic materials. In this study, the stress relaxation behaviour in pure magnesium is investigated during interrupted uniaxial tensile tests. During intermittent stopping of the machine for relaxation studies, the total strain is expected to remain constant. However, an anomalous non-constancy in total strain is observed in the present work. The total strain increases with relaxation time. Additional in-situ tensile tests indicate that the non-constant total strain is restricted only in the gauge area of the specimen, indicating a likely shear dominated deformation such as grain boundary sliding (GBS) responsible for the anomalous behaviour. The role of GBS during relaxation is studied using the deformation induced evolution of surface inhomogeneity. Determinations of surface profiling step heights at grain boundaries and inclination of grains were used to quantify the effect of GBS. The estimated activation volume of 4.35 b 3 further confirms the role of slip induced GBS on the deformation. A new stress relaxation model accommodating GBS is proposed and is found to fit the experimental data accurately.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...