Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Rep U S ; 20202020 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34457374

RESUMEN

This paper proposes a magnetic needle steering controller to manipulate mesoscale magnetic suture needles for executing planned suturing motion. This is an initial step towards our research objective: enabling autonomous control of magnetic suture needles for suturing tasks in minimally invasive surgery. To demonstrate the feasibility of accurate motion control, we employ a cardinally-arranged four-coil electromagnetic system setup and control magnetic suture needles in a 2-dimensional environment, i.e., a Petri dish filled with viscous liquid. Different from only using magnetic field gradients to control small magnetic agents under high damping conditions, the dynamics of a magnetic suture needle are investigated and encoded in the controller. Based on mathematical formulations of magnetic force and torque applied on the needle, we develop a kinematically constrained dynamic model that controls the needle to rotate and only translate along its central axis for mimicking the behavior of surgical sutures. A current controller of the electromagnetic system combining with closed-loop control schemes is designed for commanding the magnetic suture needles to achieve desired linear and angular velocities. To evaluate control performance of magnetic suture needles, we conduct experiments including needle rotation control, needle position control by using discretized trajectories, and velocity control by using a time-varying circular trajectory. The experiment results demonstrate our proposed needle steering controller can perform accurate motion control of mesoscale magnetic suture needles.

2.
IEEE Trans Med Robot Bionics ; 2(2): 206-215, 2020 May.
Artículo en Inglés | MEDLINE | ID: mdl-34746679

RESUMEN

This paper demonstrates the feasibility of ligation and tissue penetration for surgical suturing tasks using magnetically actuated suture needles. Manipulation of suture needles in minimally invasive surgery involves using articulated manual/robotic tools for needle steering and controlling needle-tissue or thread-tissue interactions. The large footprints of conventional articulated surgical tools significantly increase surgical invasiveness, potentially leading to longer recovery times, tissue damage, scarring, or associated infections. Aiming to address these issues, we investigate the feasibility of using magnetic fields to tetherlessly steer suture needles. The primary challenge of such a concept is to provide sufficient force for tissue penetration and ligation. In this work, we demonstrate proof-of-concept capabilities using the MagnetoSuture™ system, performing tissue penetration and ligation tasks using ex vivo tissues, customized NdFeB suture needles with attached threads, and remote-controlled magnetic fields. To evaluate the system performance, we conducted experiments demonstrating tetherless recreation of a purse string suture pattern, ligation of an excised segment of a rat intestine, and penetration of rat intestines.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...