Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Science ; : eadn6354, 2024 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-38753765

RESUMEN

AlphaFold2 (AF2) models have had wide impact, but they have had mixed success in retrospective ligand recognition. We prospectively docked large libraries against unrefined AF2 models of the σ2 and 5-HT2A receptors, testing hundreds of new molecules and comparing results to docking against the experimental structures. Hit rates were high and similar for the experimental and the AF2 structures, as were affinities. The success of docking against the AF2 models was achieved despite differences in orthosteric residue conformations versus the experimental structures. Determination of the cryo-electron microscopy structure for one of the more potent 5HT2A ligands from the AF2 docking revealed residue accommodations that resembled the AF2 prediction. AF2 models may sample conformations that differ from experimental structures but remain low energy and relevant for ligand discovery, extending the domain of structure-based ligand discovery.

2.
Nature ; 628(8008): 664-671, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38600377

RESUMEN

Bitter taste sensing is mediated by type 2 taste receptors (TAS2Rs (also known as T2Rs)), which represent a distinct class of G-protein-coupled receptors1. Among the 26 members of the TAS2Rs, TAS2R14 is highly expressed in extraoral tissues and mediates the responses to more than 100 structurally diverse tastants2-6, although the molecular mechanisms for recognizing diverse chemicals and initiating cellular signalling are still poorly understood. Here we report two cryo-electron microscopy structures for TAS2R14 complexed with Ggust (also known as gustducin) and Gi1. Both structures have an orthosteric binding pocket occupied by endogenous cholesterol as well as an intracellular allosteric site bound by the bitter tastant cmpd28.1, including a direct interaction with the α5 helix of Ggust and Gi1. Computational and biochemical studies validate both ligand interactions. Our functional analysis identified cholesterol as an orthosteric agonist and the bitter tastant cmpd28.1 as a positive allosteric modulator with direct agonist activity at TAS2R14. Moreover, the orthosteric pocket is connected to the allosteric site via an elongated cavity, which has a hydrophobic core rich in aromatic residues. Our findings provide insights into the ligand recognition of bitter taste receptors and suggest activities of TAS2R14 beyond bitter taste perception via intracellular allosteric tastants.


Asunto(s)
Colesterol , Espacio Intracelular , Receptores Acoplados a Proteínas G , Gusto , Humanos , Regulación Alostérica/efectos de los fármacos , Sitio Alostérico , Colesterol/química , Colesterol/metabolismo , Colesterol/farmacología , Microscopía por Crioelectrón , Interacciones Hidrofóbicas e Hidrofílicas , Espacio Intracelular/química , Espacio Intracelular/metabolismo , Ligandos , Receptores Acoplados a Proteínas G/agonistas , Receptores Acoplados a Proteínas G/química , Receptores Acoplados a Proteínas G/metabolismo , Receptores Acoplados a Proteínas G/ultraestructura , Reproducibilidad de los Resultados , Gusto/efectos de los fármacos , Gusto/fisiología , Transducina/química , Transducina/metabolismo , Transducina/ultraestructura
3.
bioRxiv ; 2024 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-38187536

RESUMEN

AlphaFold2 (AF2) and RosettaFold have greatly expanded the number of structures available for structure-based ligand discovery, even though retrospective studies have cast doubt on their direct usefulness for that goal. Here, we tested unrefined AF2 models prospectively, comparing experimental hit-rates and affinities from large library docking against AF2 models vs the same screens targeting experimental structures of the same receptors. In retrospective docking screens against the σ2 and the 5-HT2A receptors, the AF2 structures struggled to recapitulate ligands that we had previously found docking against the receptors' experimental structures, consistent with published results. Prospective large library docking against the AF2 models, however, yielded similar hit rates for both receptors versus docking against experimentally-derived structures; hundreds of molecules were prioritized and tested against each model and each structure of each receptor. The success of the AF2 models was achieved despite differences in orthosteric pocket residue conformations for both targets versus the experimental structures. Intriguingly, against the 5-HT2A receptor the most potent, subtype-selective agonists were discovered via docking against the AF2 model, not the experimental structure. To understand this from a molecular perspective, a cryoEM structure was determined for one of the more potent and selective ligands to emerge from docking against the AF2 model of the 5-HT2A receptor. Our findings suggest that AF2 models may sample conformations that are relevant for ligand discovery, much extending the domain of applicability of structure-based ligand discovery.

4.
Biochim Biophys Acta Proteins Proteom ; 1871(5): 140932, 2023 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-37433401

RESUMEN

Human α-, ß-, and γ-synuclein (syn) are natively unfolded proteins present in the brain. Deposition of aggregated α-syn in Lewy bodies is associated with Parkinson's disease (PD) and γ-syn is known to be involved in both neurodegeneration and breast cancer. At physiological pH, while α-syn has the highest propensity for fibrillation followed by γ-syn, ß-syn does not form any fibrils. Fibril formation in these proteins could be modulated by protein structure stabilizing osmolytes such as trehalose which has an exceptional stabilizing effect for globular proteins. We present a comprehensive study of the effect of trehalose on the conformation, aggregation, and fibril morphology of α-, ß-, and γ-syn proteins. Rather than stabilizing the intrinsically disordered state of the synucleins, trehalose accelerates the rate of fibril formation by forming aggregation-competent partially folded intermediate structures. Fibril morphologies are also strongly dependent on the concentration of trehalose with ≤ 0.4M favoring the formation of mature fibrils in α-, and γ-syn with no effect on the fibrillation of ß-syn. At ≥ 0.8M, trehalose promotes the formation of smaller aggregates that are more cytotoxic. Live cell imaging of preformed aggregates of a labeled A90C α-syn shows their rapid internalization into neural cells which could be useful in reducing the load of aggregated species of α-syn. The findings throw light on the differential effect of trehalose on the conformation and aggregation of disordered synuclein proteins with respect to globular proteins and could help in understanding the effect of osmolytes on intrinsically disordered proteins under cellular stress conditions.


Asunto(s)
Proteínas Intrínsecamente Desordenadas , Trehalosa , Humanos , gamma-Sinucleína/química , Disacáridos , alfa-Sinucleína/química , Conformación Proteica , Proteínas Intrínsecamente Desordenadas/química , Encéfalo/metabolismo , Chaperonas Moleculares/metabolismo
5.
Cell ; 186(2): 413-427.e17, 2023 01 19.
Artículo en Inglés | MEDLINE | ID: mdl-36638794

RESUMEN

Opioids are effective analgesics, but their use is beset by serious side effects, including addiction and respiratory depression, which contribute to the ongoing opioid crisis. The human opioid system contains four opioid receptors (µOR, δOR, κOR, and NOPR) and a set of related endogenous opioid peptides (EOPs), which show distinct selectivity toward their respective opioid receptors (ORs). Despite being key to the development of safer analgesics, the mechanisms of molecular recognition and selectivity of EOPs to ORs remain unclear. Here, we systematically characterize the binding of EOPs to ORs and present five structures of EOP-OR-Gi complexes, including ß-endorphin- and endomorphin-bound µOR, deltorphin-bound δOR, dynorphin-bound κOR, and nociceptin-bound NOPR. These structures, supported by biochemical results, uncover the specific recognition and selectivity of opioid peptides and the conserved mechanism of opioid receptor activation. These results provide a structural framework to facilitate rational design of safer opioid drugs for pain relief.


Asunto(s)
Receptores Opioides , Humanos , Analgésicos Opioides/farmacología , Péptidos Opioides , Receptores Opioides mu/metabolismo , Receptores Opioides/química
6.
Cureus ; 14(11): e31508, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36532902

RESUMEN

Background At the peak of the coronavirus disease 2019 (COVID-19) pandemic, the need for an orally administered agent to prevent the progression of acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection became increasingly evident, which was the impetus behind our investigations with molnupiravir. Molnupiravir has been shown to be effective in preventing hospitalizations and/or clinical complications in patients with mild-to-moderate COVID-19. In this study, we evaluate the efficacy and safety of molnupiravir in Indian patients with mild SARS-CoV-2 infection and at least one risk factor for disease progression (CTRI/2021/05/033739). Methodology This was a phase III, multicenter, randomized, open-label, controlled study conducted in Indian adults aged 18-60 years with mild SARS-CoV-2, reverse transcription polymerase chain reaction (RT-PCR)-positive within 48 hours of enrollment in the study, and within five days of first symptom onset. Enrolled patients were randomized to treatment arms in a 1:1 ratio to receive molnupiravir or placebo in addition to the standard of care (SoC) for SARS-CoV-2 infection. The SoC was in compliance with Government of India guidelines that were in force at the time. The primary endpoint was the rate of hospitalization up to day 14. Safety endpoints included incidence of adverse events (AEs). Results Eligible patients were randomized in a 1:1 ratio to receive molnupiravir in addition to SoC treatment (n = 608) or SoC alone (n = 610). In the molnupiravir group, nine (1.48%) patients required hospitalization versus 26 (4.26%) patients in the control group (risk difference = -2.78%; 95% CI = -4.65, -0.90; p = 0.0053). Overall, 45 (3.70%) patients reported 47 AEs during the study, most of which were mild and resolved completely. The molnupiravir group reported 30 AEs compared to 17 AEs in the control group. Headache and nausea were the two most commonly reported AEs. Conclusions The molnupiravir arm showed a lower rate of hospitalization and a shorter time for the improvement of clinical symptoms coupled with early RT-PCR negativity. Molnupiravir was well tolerated, and AEs were mild and rare. The addition of molnupiravir to standard therapy has the potential to prevent the progression of mild COVID-19 disease to the severe form.

7.
ACS Chem Neurosci ; 13(16): 2386-2398, 2022 08 17.
Artículo en Inglés | MEDLINE | ID: mdl-35894503

RESUMEN

Serotonin (5-hydroxytryptamine; 5-HT) 2A receptor (5-HT2AR) signaling is essential for the actions of classical psychedelic drugs. In this study, we examined whether sequence variations in the 5-HT2AR gene affect the signaling of four commonly used psychedelic drugs. We examined the in vitro pharmacology of seven non-synonymous single-nucleotide polymorphisms (SNPs), which give rise to Ser12Asn, Thr25Asn, Asp48Asn, Ile197Val4.47, Ala230Thr, Ala447Val, and His452Tyr variant 5-HT2A serotonin receptors. We found that these non-synonymous SNPs exert statistically significant, although modest, effects on the efficacy and potency of four therapeutically relevant psychedelics. Significantly, the in vitro pharmacological effects of the SNP drug actions at 5-HT2AR are drug specific.


Asunto(s)
Alucinógenos , Alucinógenos/farmacología , Polimorfismo de Nucleótido Simple/genética , Receptor de Serotonina 5-HT2A/genética , Serotonina , Agonistas del Receptor de Serotonina 5-HT2/farmacología , Transducción de Señal
8.
Nature ; 601(7893): 452-459, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34912117

RESUMEN

Structure-based virtual ligand screening is emerging as a key paradigm for early drug discovery owing to the availability of high-resolution target structures1-4 and ultra-large libraries of virtual compounds5,6. However, to keep pace with the rapid growth of virtual libraries, such as readily available for synthesis (REAL) combinatorial libraries7, new approaches to compound screening are needed8,9. Here we introduce a modular synthon-based approach-V-SYNTHES-to perform hierarchical structure-based screening of a REAL Space library of more than 11 billion compounds. V-SYNTHES first identifies the best scaffold-synthon combinations as seeds suitable for further growth, and then iteratively elaborates these seeds to select complete molecules with the best docking scores. This hierarchical combinatorial approach enables the rapid detection of the best-scoring compounds in the gigascale chemical space while performing docking of only a small fraction (<0.1%) of the library compounds. Chemical synthesis and experimental testing of novel cannabinoid antagonists predicted by V-SYNTHES demonstrated a 33% hit rate, including 14 submicromolar ligands, substantially improving over a standard virtual screening of the Enamine REAL diversity subset, which required approximately 100 times more computational resources. Synthesis of selected analogues of the best hits further improved potencies and affinities (best inhibitory constant (Ki) = 0.9 nM) and CB2/CB1 selectivity (50-200-fold). V-SYNTHES was also tested on a kinase target, ROCK1, further supporting its use for lead discovery. The approach is easily scalable for the rapid growth of combinatorial libraries and potentially adaptable to any docking algorithm.


Asunto(s)
Algoritmos , Técnicas Químicas Combinatorias , Descubrimiento de Drogas , Bibliotecas Digitales , Ligandos , Simulación del Acoplamiento Molecular , Quinasas Asociadas a rho
9.
Lung India ; 39(6): 517-524, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36629230

RESUMEN

Background: The safety and efficacy of fixed-dose combination (FDC) of glycopyrronium bromide 12.5 µg/formoterol fumarate 12 µg (GB/FF) twice daily as dry powder inhalers (DPIs) compared to glycopyrronium 50 µg monotherapy (GLY) once daily as DPI in subjects with moderate-to-severe chronic obstructive pulmonary disease (COPD) were evaluated. Methods: This was a phase-3, randomized, double-blind, active-controlled, parallel-group, superiority study conducted in India. COPD patients aged ≥40 to ≤65 years, current or ex-smokers with FEV1/FVC <0.70, using ICS, LAMA, or LABA for ≥1 month were included. Subjects were randomized (1:1) to GB/FF or GLY for 12 weeks. The primary efficacy endpoint was the change from baseline in peak FEV1 at the end of 12 weeks. The study is registered with the Clinical Trials Registry of India (CTRI/2017/02/007814). Results: Between March 2017 and July 2018, 331 patients were enrolled and randomized into GB/FF FDC (165 patients) and GLY monotherapy (166 patients) groups. At week 12, the difference in change from baseline in the peak FEV1 for GB/FF DPI versus GLY was 0.115 L (SE = 0.02; 95% CI = 0.061, 0.170; P < 0.0001). Trough FEV1 increased significantly in the GB/FF group compared to the GLY group with a treatment difference of 0.078 L (SE = 0.02; 95% CI = 0.015, 0.14; P = 0.01). There were no significant differences in adverse events between the groups. Conclusion: FDC of GB/FF (12.5/12 µg twice daily) as a DPI provides superior bronchodilation and lung function improvement over GLY (50 µg once daily) monotherapy. It is safe and well tolerated in symptomatic COPD patients.

10.
Curr Top Med Chem ; 19(16): 1365-1380, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31553283

RESUMEN

The dopamine D1 receptor (D1R) is essential for neurotransmission in various brain pathways where it modulates key functions including voluntary movement, memory, attention and reward. Not surprisingly, the D1R has been validated as a promising drug target for over 40 years and selective activation of this receptor may provide novel neurotherapeutics for neurodegenerative and neuropsychiatric disorders. Several pharmacokinetic challenges with previously identified small molecule D1R agonists have been recently overcome with the discovery and advancement of new ligands, including drug-like non-catechol D1R agonists and positive allosteric modulators. From this, several novel molecules and mechanisms have recently entered clinical studies. Here we review the major classes of D1R selective ligands including antagonists, orthosteric agonists, non-catechol biased agonists and positive allosteric modulators, highlighting their structure-activity relationships and medicinal chemistry. Recent chemistry breakthroughs and innovative approaches to selectively target and activate the D1R also hold promise for creating pharmacotherapy for several neurological diseases.


Asunto(s)
Agonistas de Dopamina/farmacología , Trastornos Mentales/tratamiento farmacológico , Enfermedades Neurodegenerativas/tratamiento farmacológico , Receptores de Dopamina D1/agonistas , Animales , Agonistas de Dopamina/síntesis química , Agonistas de Dopamina/química , Humanos , Ligandos , Trastornos Mentales/metabolismo , Estructura Molecular , Enfermedades Neurodegenerativas/metabolismo , Receptores de Dopamina D1/metabolismo
11.
Soc Reprod Fertil Suppl ; 63: 203-16, 2007.
Artículo en Inglés | MEDLINE | ID: mdl-17566274

RESUMEN

A translucent matrix termed the zona pellucida (ZP) surrounds the mammalian oocyte. It plays a critical role in fertilization by acting as a "docking site" for binding of spermatozoa followed by induction of the acrosome reaction in the zona bound sperm. Recent analyses of the genes of the human oocyte revealed that the ZP matrix is composed of four glycoproteins, designated as ZP1, ZP2, ZP3 and ZP4, instead of 3 found in the mouse ZP. Comparison of the deduced amino acid (aa) sequences of the human ZP glycoproteins with those from various species, revealed that these are evolutionarily conserved. Phylogenetic analysis revealed that ZP1 and ZP4 may be related as these have the highest sequence identity at the aa level within a given species. Each zona protein has a signal sequence driving these proteins to the endoplasmic reticulum, a aproximately 260 aa long 'ZP domain' comprising of 8-10 conserved cysteine residues, a C-terminal, hydrophobic transmembrane-like region and a short cytoplasmic tail. In order to understand the structure-function relationship of human ZP glycoproteins, our lab has cloned and expressed ZP2, ZP3 and ZP4 proteins both in E. coli as well as baculovirus expression systems. Simultaneously, our group has been able to amplify the cDNA encoding human ZP1. Employing baculovirus-expressed recombinant ZP glycoproteins; our group has provided evidence for the first time that in human, in addition to ZP3, ZP4 is also able to induce acrosomal exocytosis in the capacitated spermatozoa. ZP3 mediated induction of the acrosome reaction can be inhibited by pertussis toxin suggesting the involvement of G, protein in downstream signaling in contrast to ZP4, which follows a G, protein independent pathway. Hence, elucidation of the role of individual ZP glycoproteins in humans will provide a better insight into the gamete interaction culminating in fertilization.


Asunto(s)
Proteínas del Huevo/química , Mamíferos/metabolismo , Glicoproteínas de Membrana/química , Oocitos/metabolismo , Receptores de Superficie Celular/química , Reacción Acrosómica , Secuencia de Aminoácidos , Animales , Secuencia de Bases , Secuencia Conservada , Proteínas del Huevo/genética , Proteínas del Huevo/metabolismo , Femenino , Humanos , Masculino , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/metabolismo , Datos de Secuencia Molecular , Receptores de Superficie Celular/genética , Receptores de Superficie Celular/metabolismo , Relación Estructura-Actividad , Glicoproteínas de la Zona Pelúcida
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA