Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Analyst ; 146(13): 4340-4347, 2021 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-34106115

RESUMEN

Sensitive, reliable and cost-effective detection of pathogens has wide ranging applications in clinical diagnostics and therapeutics, water and food safety, environmental monitoring, biosafety and epidemiology. Nucleic acid amplification tests (NAATs) such as PCR and isothermal amplification methods provide excellent analytical performance and significantly faster turnaround times than conventional culture-based methods. However, the inherent cost and complexity of NAATs limit their application in resource-limited settings and the developing world. To help address this urgent need, we have developed a sensitive method for nucleic acid analysis based on padlock probe rolling circle amplification (PLRCA), nuclease protection (NP) and lateral flow detection (LFA), referred to as PLAN-LFA, that can be used in resource-limited settings. The assay involves solution-phase hybridization of a padlock probe to target, sequence-specific ligation of the probe to form a circular template that undergoes isothermal rolling circle amplification in the presence of a polymerase and a labeled probe DNA. The RCA product is a long, linear concatenated single-stranded DNA that contains binding sites for the labeled probe. The sample is then exposed to a nuclease which selectively cleaves single-stranded DNA, the double-stranded labeled probe is protected from nuclease digestion and detected in a lateral flow immunoassay format to provide a visual, colorimetric readout of results. We have developed specific assays targeting beta-lactamase resistance gene for monitoring of antimicrobial resistance and Severe Acute Respiratory Syndrome-Coronavirus-2 (SARS-CoV-2, the novel coronavirus discovered in 2019) using the PLAN-LFA platform. The assay provides a limit of detection of 1.1 pM target DNA (or 1.3 × 106 copies per reaction). We also demonstrate the versatility and robustness of the method by performing analysis on DNA and RNA targets, and perform analysis in complex sample matrices like saliva, plant tissue extract and bacterial culture without any sample pretreatment steps.


Asunto(s)
COVID-19 , SARS-CoV-2 , Sondas de ADN , Humanos , Técnicas de Amplificación de Ácido Nucleico , Hibridación de Ácido Nucleico
2.
Anal Bioanal Chem ; 412(13): 3051-3061, 2020 May.
Artículo en Inglés | MEDLINE | ID: mdl-32193587

RESUMEN

Pathogen detection is crucial for human, animal, and environmental health; crop protection; and biosafety. Current culture-based methods have long turnaround times and lack sensitivity. Nucleic acid amplification tests offer high specificity and sensitivity. However, their cost and complexity remain a significant hurdle to their applications in resource-limited settings. Thus, point-of-need molecular diagnostic platforms that can be used by minimally trained personnel are needed. The nuclease protection assay (NPA) is a nucleic acid hybridization-based technique that does not rely on amplification, can be paired with other methods to improve specificity, and has the potential to be developed into a point-of-need device. In traditional NPAs, hybridization of an anti-sense probe to the target sequence is followed by single-strand nuclease digestion. The double-stranded target-probe hybrids are protected from nuclease digestion, precipitated, and visualized using autoradiography or other methods. We have developed a paper-based nuclease protection assay (PB-NPA) that can be implemented in field settings as the detection approach requires limited equipment and technical expertise. The PB-NPA uses a lateral flow format to capture the labeled target-probe hybrids onto a nitrocellulose membrane modified with an anti-label antibody. A colorimetric enzyme-substrate pair is used for signal visualization, producing a test line. The nuclease digestion of non-target and mismatched DNA provides high specificity while signal amplification with the reporter enzyme-substrate provides high sensitivity. We have also developed an on-chip sample pretreatment step utilizing chitosan-modified paper to eliminate possible interferents from the reaction and preconcentrate nucleic acids, thereby significantly reducing the need for auxiliary equipment. Graphical abstract.


Asunto(s)
Dispositivos Laboratorio en un Chip , Ácidos Nucleicos/análisis , Papel , Sistemas de Atención de Punto , ADN/química , Límite de Detección , Análisis de Secuencia por Matrices de Oligonucleótidos
3.
PLoS One ; 10(5): e0128118, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26020244

RESUMEN

BACKGROUND: A paper-based, multiplexed, microfluidic assay has been developed to visually measure alanine aminotransferase (ALT) in a fingerstick sample, generating rapid, semi-quantitative results. Prior studies indicated a need for improved accuracy; the device was subsequently optimized using an FDA-approved automated platform (Abaxis Piccolo Xpress) as a comparator. Here, we evaluated the performance of the optimized paper test for measurement of ALT in fingerstick blood and serum, as compared to Abaxis and Roche/Hitachi platforms. To evaluate feasibility of remote results interpretation, we also compared reading cell phone camera images of completed tests to reading the device in real time. METHODS: 96 ambulatory patients with varied baseline ALT concentration underwent fingerstick testing using the paper device; cell phone images of completed devices were taken and texted to a blinded off-site reader. Venipuncture serum was obtained from 93/96 participants for routine clinical testing (Roche/Hitachi); subsequently, 88/93 serum samples were captured and applied to paper and Abaxis platforms. Paper test and reference standard results were compared by Bland-Altman analysis. FINDINGS: For serum, there was excellent agreement between paper test and Abaxis results, with negligible bias (+4.5 U/L). Abaxis results were systematically 8.6% lower than Roche/Hitachi results. ALT values in fingerstick samples tested on paper were systematically lower than values in paired serum tested on paper (bias -23.6 U/L) or Abaxis (bias -18.4 U/L); a correction factor was developed for the paper device to match fingerstick blood to serum. Visual reads of cell phone images closely matched reads made in real time (bias +5.5 U/L). CONCLUSIONS: The paper ALT test is highly accurate for serum testing, matching the reference method against which it was optimized better than the reference methods matched each other. A systematic difference exists between ALT values in fingerstick and paired serum samples, and can be addressed by application of a correction factor to fingerstick values. Remote reading of this device is feasible.


Asunto(s)
Alanina Transaminasa/sangre , Análisis Químico de la Sangre/instrumentación , Análisis Químico de la Sangre/métodos , Juego de Reactivos para Diagnóstico , Femenino , Humanos , Masculino , Flebotomía , Sensibilidad y Especificidad
4.
Angew Chem Int Ed Engl ; 54(20): 5836-53, 2015 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-25914299

RESUMEN

Despite the growth of research in universities on point-of-care (POC) diagnostics for global health, most devices never leave the laboratory. The processes that move diagnostic technology from the laboratory to the field--the processes intended to evaluate operation and performance under realistic conditions--are more complicated than they might seem. Two case studies illustrate this process: the development of a paper-based device to measure liver function, and the development of a device to identify sickle cell disease based on aqueous multiphase systems (AMPS) and differences in the densities of normal and sickled cells. Details of developing these devices provide strategies for forming partnerships, prototyping devices, designing studies, and evaluating POC diagnostics. Technical and procedural lessons drawn from these experiences may be useful to those designing diagnostic tests for developing countries, and more generally, technologies for use in resource-limited environments.


Asunto(s)
Anemia de Células Falciformes/diagnóstico , Anemia de Células Falciformes/economía , Pruebas de Función Hepática/economía , Sistemas de Atención de Punto/economía , Humanos
5.
PLoS One ; 8(9): e75616, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24098705

RESUMEN

Monitoring for drug-induced liver injury (DILI) via serial transaminase measurements in patients on potentially hepatotoxic medications (e.g., for HIV and tuberculosis) is routine in resource-rich nations, but often unavailable in resource-limited settings. Towards enabling universal access to affordable point-of-care (POC) screening for DILI, we have performed the first field evaluation of a paper-based, microfluidic fingerstick test for rapid, semi-quantitative, visual measurement of blood alanine aminotransferase (ALT). Our objectives were to assess operational feasibility, inter-operator variability, lot variability, device failure rate, and accuracy, to inform device modification for further field testing. The paper-based ALT test was performed at POC on fingerstick samples from 600 outpatients receiving HIV treatment in Vietnam. Results, read independently by two clinic nurses, were compared with gold-standard automated (Roche Cobas) results from venipuncture samples obtained in parallel. Two device lots were used sequentially. We demonstrated high inter-operator agreement, with 96.3% (95% C.I., 94.3-97.7%) agreement in placing visual results into clinically-defined "bins" (<3x, 3-5x, and >5x upper limit of normal), >90% agreement in validity determination, and intraclass correlation coefficient of 0.89 (95% C.I., 0.87-0.91). Lot variability was observed in % invalids due to hemolysis (21.1% for Lot 1, 1.6% for Lot 2) and correlated with lots of incorporated plasma separation membranes. Invalid rates <1% were observed for all other device controls. Overall bin placement accuracy for the two readers was 84% (84.3%/83.6%). Our findings of extremely high inter-operator agreement for visual reading-obtained in a target clinical environment, as performed by local practitioners-indicate that the device operation and reading process is feasible and reproducible. Bin placement accuracy and lot-to-lot variability data identified specific targets for device optimization and material quality control. This is the first field study performed with a patterned paper-based microfluidic device and opens the door to development of similar assays for other important analytes.


Asunto(s)
Alanina Transaminasa/sangre , Análisis Químico de la Sangre/métodos , Enfermedad Hepática Inducida por Sustancias y Drogas/diagnóstico , Monitoreo de Drogas/métodos , Pruebas de Función Hepática/métodos , Sistemas de Atención de Punto , Países en Desarrollo/economía , Humanos , Microfluídica , Variaciones Dependientes del Observador , Papel , Vietnam
6.
Sci Transl Med ; 4(152): 152ra129, 2012 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-22993296

RESUMEN

In developed nations, monitoring for drug-induced liver injury through serial measurements of serum transaminases [aspartate aminotransferase (AST) and alanine aminotransferase (ALT)] in at-risk individuals is the standard of care. Despite the need, monitoring for drug-related hepatotoxicity in resource-limited settings is often limited by expense and logistics, even for patients at highest risk. This article describes the development and clinical testing of a paper-based, multiplexed microfluidic assay designed for rapid, semiquantitative measurement of AST and ALT in a fingerstick specimen. Using 223 clinical specimens obtained by venipuncture and 10 fingerstick specimens from healthy volunteers, we have shown that our assay can, in 15 min, provide visual measurements of AST and ALT in whole blood or serum, which allow the user to place those values into one of three readout "bins" [<3× upper limit of normal (ULN), 3 to 5× ULN, and >5× ULN, corresponding to tuberculosis/HIV treatment guidelines] with >90% accuracy. These data suggest that the ultimate point-of-care fingerstick device will have high impact on patient care in low-resource settings.


Asunto(s)
Pruebas de Función Hepática/economía , Pruebas de Función Hepática/métodos , Papel , Sistemas de Atención de Punto/economía , Transaminasas/sangre , Transaminasas/economía , Alanina Transaminasa/sangre , Aspartato Aminotransferasas/sangre , Costos y Análisis de Costo , Humanos , Pruebas de Función Hepática/instrumentación , Flebotomía , Estándares de Referencia , Reproducibilidad de los Resultados , Temperatura , Factores de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...