Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Front Mol Biosci ; 11: 1492847, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39473823

RESUMEN

Platelet-derived growth factor receptor beta (PDGFRß) belongs to the receptor tyrosine kinase (RTK) protein family and is implicated in several disorders such as hematopoietic, glial, and soft-tissue cancer, non-cancerous disorders, including skeletal defects, brain calcification, and vascular anomalies. The research on small molecule inhibitors targeting PDGFRß in cancer treatment has seen promising developments, but significant gaps remain. PDGFRß, receptor tyrosine kinase, is overexpressed in various cancers and plays an important role in tumor progression, making it a potential therapeutic target. However, despite advances in identifying and characterizing PDGFRß inhibitors, few have progressed to clinical trials, and the mechanistic details of PDGFRß's interactions with small molecule inhibitors are still not fully understood. Moreover, the specificity and selectivity of these inhibitors remain challenging, as off-target effects can lead to unwanted toxicity. In this investigation, two compounds, Genostrychnine and Chelidonine, were discovered that help inhibit the kinase activity of PDGFRß. These small molecules were identified by employing various parameters involved in the drug discovery process, such as Lipinski's rule of five (RO5), 2D similarity search and 3D pharmacophore-based virtual screening followed by MD simulation studies. The identified molecules were found to be effective and significantly bound with the PDGFRß kinase domain. Overall, our findings demonstrate that these small drug-like compounds can be beneficial tools in studying the properties of PDGFRß and can play a crucial role in the therapeutic development of cancers and other associated diseases.

2.
Int J Biol Macromol ; 262(Pt 2): 130146, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38365140

RESUMEN

Integrin-linked kinase (ILK), a ß1-integrin cytoplasmic domain interacting protein, supports multi-protein complex formation. ILK-1 is involved in neurodegenerative diseases by promoting neuro-inflammation. On the other hand, its overexpression induces epithelial-mesenchymal transition (EMT), which is a major hallmark of cancer and activates various factors associated with a tumorigenic phenotype. Thus, ILK-1 is considered as an attractive therapeutic target. We investigated the binding affinity and ILK-1 inhibitory potential of noscapine (NP) using spectroscopic and docking approaches followed by enzyme inhibition activity. A strong binding affinity of NP was measured for the ILK-1 with estimated Ksv (M-1) values of 1.9 × 105, 3.6 × 105, and 4.0 × 105 and ∆G0 values (kcal/mol) -6.19554, -7.8557 and -8.51976 at 298 K, 303 K, and 305 K, respectively. NP binds to ILK-1 with a docking score of -6.6 kcal/mol and forms strong interactions with active-site pocket residues (Lys220, Arg323, and Asp339). The binding constant for the interaction of NP to ILK-1 was 1.04 × 105 M-1, suggesting strong affinity and excellent ILK-1 inhibitory potential (IC50 of ∼5.23µM). Conformational dynamics of ILK-1 were also studied in the presence of NP. We propose that NP presumably inhibits ILK-1-mediated phosphorylation of various downstream signalling pathways that are involved in cancer cell survival and neuroinflammation.


Asunto(s)
Neoplasias , Enfermedades Neurodegenerativas , Noscapina , Humanos , Enfermedades Neurodegenerativas/tratamiento farmacológico , Proteínas Serina-Treonina Quinasas/metabolismo , Transducción de Señal , Neoplasias/tratamiento farmacológico
3.
Int J Biol Macromol ; 259(Pt 2): 129314, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38211912

RESUMEN

Protein kinases have emerged as major contributors to various diseases. They are currently exploited as a potential target in drug discovery because they play crucial roles in cell signaling, growth, and regulation. Their dysregulation is associated with inflammatory disorders, cancer, and neurodegenerative diseases. Pyruvate dehydrogenase kinase 3 (PDK3) has become an attractive drug target in cancer therapeutics. In the present study, we investigated the effective role of thymol in PDK3 inhibition due to the high affinity predicted through molecular docking studies. Hence, to better understand this inhibition mechanism, we carried out a 100 ns molecular dynamics (MD) simulation to analyse the dynamics and stability of the PDK3-thymol complex. The PDK3-thymol complex was stable and energetically favourable, with many intramolecular hydrogen bond interactions in the PDK3-thymol complex. Enzyme inhibition assay showed significant inhibition of PDK3 by thymol, revealing potential inhibitory action of thymol towards PDK3 (IC50 = 2.66 µM). In summary, we established thymol as one of the potential inhibitors of PDK3, proposing promising therapeutic implications for severe diseases associated with PDK3 dysregulation. This study further advances our understanding of thymol's therapeutic capabilities and potential role in cancer treatment.


Asunto(s)
Neoplasias , Timol , Humanos , Piruvato Deshidrogenasa Quinasa Acetil-Transferidora/química , Timol/farmacología , Simulación del Acoplamiento Molecular , Proteínas Quinasas/metabolismo , Neoplasias/tratamiento farmacológico
4.
Discov Med ; 36(180): 129-139, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38273753

RESUMEN

BACKGROUND: TANK-binding kinase 1 (TBK1) is an important serine/threonine kinase involved in inflammatory signaling pathways, influencing cellular processes such as proliferation, programmed cell death, autophagy, and immune response regulation. Dysregulation of TBK1 has been linked to cancer progression and neurodegenerative disorders, making it an attractive target for therapeutic development. This study aimed to identify potential TBK1 inhibitors using a structure-based virtual screening approach. METHODS: We conducted a comprehensive screening of the ZINC database to identify compounds with high binding affinity for TBK1, employing molecular docking as the primary selection criterion. The top candidates were then subjected to extensive 200 ns molecular dynamics (MD) simulations to assess the conformational dynamics of TBK1 and the stability of the protein-ligand complexes, with a focus on ZINC02095133 and ZINC02130647. RESULTS: The findings revealed that TBK1 forms stable complexes with ZINC02095133 and ZINC02130647, demonstrating consistent interactions throughout the MD simulations. This suggests that these compounds hold promise as potential lead molecules for future therapies targeting TBK1. CONCLUSIONS: This study identifies ZINC02095133 and ZINC02130647 as promising TBK1 inhibitors with therapeutic potential. However, further experimental validation and optimization are required to develop novel inhibitors for diseased conditions associated with TBK1 signaling. These findings pave the way for future investigations into the clinical utility of these compounds in combating TBK1-related pathologies.


Asunto(s)
Neoplasias , Proteínas Serina-Treonina Quinasas , Humanos , Simulación del Acoplamiento Molecular , Proteínas Serina-Treonina Quinasas/química , Proteínas Serina-Treonina Quinasas/metabolismo , Transducción de Señal , Simulación de Dinámica Molecular , Neoplasias/tratamiento farmacológico
5.
J Mol Recognit ; 37(2): e3069, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38053481

RESUMEN

Activin receptor-like kinase 1 (ALK1) is a transmembrane receptor involved in crucial signaling pathways associated with angiogenesis and vascular development. Inhibition of ALK1 signaling has emerged as a promising therapeutic strategy for various angiogenesis-related diseases, including cancer and hereditary hemorrhagic telangiectasia. This study aimed to investigate the potential of phytoconstituents as inhibitors of ALK1 using a combined approach of virtual screening and molecular dynamics (MDs) simulations. Phytoconstituents from the IMPPAT 2.0 database underwent virtual screening to identify potential inhibitors of ALK1. The compounds were initially filtered based on physicochemical parameters, following Lipinski's rules and the PAINS filter. Subsequently, compounds demonstrating high binding affinities in docking analysis were further analyzed. Additional assessments, including ADMET, PAINS, and PASS evaluations, were conducted to identify more potent hits. Through interaction analysis, a phytoconstituent, Candidine, exhibited appreciable affinity and specific interactions with the ALK1 active site. To validate the results, MD simulations and principal components analysis were performed. The MD simulations demonstrated that Candidine stabilized the ALK1 structure and reduced conformational fluctuations. In conclusion, Candidine shows promising potential as binding partners of ALK1. These findings provide a foundation for further exploration and development of Candidine as a lead molecule for therapeutic interventions targeting ALK1-associated diseases.


Asunto(s)
Simulación de Dinámica Molecular , Neoplasias , Humanos , Transducción de Señal , Simulación del Acoplamiento Molecular
6.
J Biomol Struct Dyn ; 42(6): 3193-3203, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37184152

RESUMEN

3'-phosphoadenosine 5'-phosphosulfate synthase 1 (PAPSS1) is an enzyme that critically synthesises the biologically active form of sulfate (PAPS) for all sulfation reactions. The discovery of PAPSS1 as a possible drug target for cancer therapy, specifically in non-small cell lung cancer, has prompted us to investigate potential small-molecule inhibitors of PAPSS1. Here, a structure-based virtual screening method was used to search for phytochemicals in the IMPPAT database to find potential inhibitors of PAPSS1. The primary hits were selected based on their physicochemical, ADMET, and drug-like properties. Then, the binding affinities were calculated and analyzed the interactions to identify safer and more effective hits. The research identified two phytochemicals, Guggulsterone and Corylin, that exhibited significant affinity and specific interaction with the ATP-binding pocket of PAPSS1. Structural observations made by molecular docking were further accompanied by molecular dynamics (MD) simulations and principal component analysis (PCA) to examine the conformational changes and stability of PAPSS1 with the elucidated compounds Guggulsterone and Corylin. MD simulation results suggested that the binding of Guggulsterone and Corylin stabilizes the PAPSS1 structure, leading to fewer conformational changes. This implies that these compounds may be useful in developing PAPSS1 inhibitors for the therapeutic development against non-small cell lung cancer (NSCLC). This study highlights the potential of phytochemicals as PAPSS1 inhibitors and the utility of computational approaches in drug discovery.Communicated by Ramaswamy H. Sarma.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Humanos , Neoplasias Pulmonares/tratamiento farmacológico , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Fitoquímicos/farmacología
7.
J Pers Med ; 12(7)2022 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-35887580

RESUMEN

Oral squamous cell carcinoma (OSCC) is a major cause of death in developing countries because of high tobacco consumption. RAC-alpha serine-threonine kinase (AKT1) is considered as an attractive drug target because its prolonged activation and overexpression are associated with cancer progression and metastasis. In addition, several AKT1 inhibitors are being developed to control OSCC and other associated forms of cancers. We performed a screening of the IMPPAT (Indian Medicinal Plants, Phytochemistry and Therapeutics) database to discover promising AKT1 inhibitors which pass through various important filters such as ADMET (absorption, distribution, metabolism, excretion, and toxicity) properties, physicochemical properties, PAINS (pan-assay interference compounds) filters, PASS (prediction of activity spectra for substances) analysis, and specific interactions with AKT1. Molecules bearing admirable binding affinity and specificity towards AKT1 were selected for further analysis. Initially, we identified 30 natural compounds bearing appreciable affinity and specific interaction with AKT1. Finally, tuberosin and villosol were selected as potent and selective AKT1 inhibitors. To obtain deeper insights into binding mechanism and selectivity, we performed an all-atom molecular dynamics (MD) simulation and principal component analysis (PCA). We observed that both tuberosin and villosol strongly bind to AKT1, and their complexes were stable throughout the simulation trajectories. Our in-depth structure analysis suggested that tuberosin and villosol could be further exploited in the therapeutic targeting of OSCC and other cancers after further clinical validations.

8.
Front Oncol ; 12: 881246, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35719950

RESUMEN

Precision oncology is an absolute need today due to the emergence of treatment resistance and heterogeneity among cancerous profiles. Target-propelled cancer therapy is one of the treasures of precision oncology which has come together with substantial medical accomplishment. Prostate cancer is one of the most common cancers in males, with tremendous biological heterogeneity in molecular and clinical behavior. The spectrum of molecular abnormalities and varying clinical patterns in prostate cancer suggest substantial heterogeneity among different profiles. To identify novel therapeutic targets and precise biomarkers implicated with prostate cancer, we performed a state-of-the-art bioinformatics study, beginning with analyzing high-throughput genomic datasets from The Cancer Genome Atlas (TCGA). Weighted gene co-expression network analysis (WGCNA) suggests a set of five dysregulated hub genes (MAF, STAT6, SOX2, FOXO1, and WNT3A) that played crucial roles in biological pathways associated with prostate cancer progression. We found overexpressed STAT6 and SOX2 and proposed them as candidate biomarkers and potential targets in prostate cancer. Furthermore, the alteration frequencies in STAT6 and SOX2 and their impact on the patients' survival were explored through the cBioPortal platform. The Kaplan-Meier survival analysis suggested that the alterations in the candidate genes were linked to the decreased overall survival of the patients. Altogether, the results signify that STAT6 and SOX2 and their genomic alterations can be explored in therapeutic interventions of prostate cancer for precision oncology, utilizing early diagnosis and target-propelled therapy.

9.
OMICS ; 26(7): 404-413, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35759452

RESUMEN

Death-associated protein kinase 3 (DAPK3) is a serine/threonine protein kinase that regulates apoptosis, autophagy, transcription, and actin cytoskeleton reorganization. DAPK3 induces morphological alterations in apoptosis when overexpressed, and it is considered a potential drug target in antihypertensive and anticancer drug development. In this article, we report new findings from a structure-guided virtual screening for discovery of phytochemicals that could modulate the elevated expression of DAPK3, and with an eye to anticancer drug discovery. We used the Indian Medicinal Plants, Phytochemistry and Therapeutics (IMPPAT), a curated database, as part of the methodology. The potential initial hits were identified based on their physicochemical properties and binding affinity toward DAPK3. Subsequently, various filters for drug likeness followed by interaction analysis and molecular dynamics (MD) simulations for 100 nsec were performed to explore the conformational sampling and stability of DAPK3 with the candidate molecules. Notably, the data from all-atom MD simulations and principal component analysis suggested that DAPK3 forms stable complexes with ketanserin and rotenone. In conclusion, this study supports the idea that ketanserin and rotenone bind to DAPK3, and show stability, which can be further explored as promising scaffolds in drug development and therapeutics innovation in clinical contexts such as hypertension and various types of cancer.


Asunto(s)
Proteínas Quinasas Asociadas a Muerte Celular/antagonistas & inhibidores , Hipertensión , Neoplasias , Proteínas Quinasas Asociadas a Muerte Celular/metabolismo , Descubrimiento de Drogas/métodos , Detección Precoz del Cáncer , Humanos , Ketanserina , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Neoplasias/tratamiento farmacológico , Inhibidores de Proteínas Quinasas/química , Inhibidores de Proteínas Quinasas/farmacología , Rotenona
10.
J Biomol Struct Dyn ; 40(8): 3595-3608, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-33210561

RESUMEN

To address coronavirus disease (COVID-19), currently, no effective drug or vaccine is available. In this regard, molecular modeling approaches are highly useful to discover potential inhibitors of the main protease (Mpro) enzyme of SARS-CoV-2. Since, the Mpro enzyme plays key roles in mediating viral replication and transcription; therefore, it is considered as an attractive drug target to control SARS-CoV-2 infection. By using structure-based drug design, pharmacophore modeling, and virtual high throughput drug screening combined with docking and all-atom molecular dynamics simulation approach, we have identified five potential inhibitors of SARS-CoV-2 Mpro. MD simulation studies revealed that compound 54035018 binds to the Mpro with high affinity (ΔGbind -37.40 kcal/mol), and the complex is more stable in comparison with other protein-ligand complexes. We have identified promising leads to fight COVID-19 infection as these compounds fulfill all drug-likeness properties. However, experimental and clinical validations are required for COVID-19 therapy.Communicated by Ramaswamy H. Sarma.


Asunto(s)
Tratamiento Farmacológico de COVID-19 , Inhibidores de Proteasas , Proteasas 3C de Coronavirus , Humanos , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Inhibidores de Proteasas/farmacología , SARS-CoV-2
11.
J Biomol Struct Dyn ; 40(14): 6350-6362, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-33565370

RESUMEN

Sphingosine kinase 1 (SphK1) and sphingosine-1-phosphate (S1P) signaling regulates numerous diseases such as cancer, diabetes, and inflammation-related ailments, rheumatoid arthritis, atherosclerosis, and multiple sclerosis. The importance of SphK1 in chemo-resistance has been extensively explored in breast, lung, colon, and hepatocellular carcinomas. SphK1 is considered an attractive drug target for the development of anticancer therapy. New drug molecules targeting the S1P signaling are required owing to its pleiotropic nature and association with multiple downstream targets. Here, we have investigated the binding affinity and SphK1 inhibitory potential of cinchonine and colcemid using a combined molecular docking and simulation studies followed by experimental analysis. These compounds bind to SphK1 with a significantly high affinity and subsequently inhibit kinase activity (IC50 7-9 µM). Further, MD simulation studies revealed that both cinchonine and colcemid bind to the residues at the active site pocket of SphK1 with several non-covalent interactions, which may be responsible for inhibiting its kinase activity. Besides, the binding of cinchonine and colcemid causes substantial conformational changes in the structure of SphK1. Taken together, cinchonine and colcemid may be implicated in designing potential drug molecules with improved affinity and specificity for SphK1 targeting anticancer therapy.Communicated by Ramaswamy H. Sarma.


Asunto(s)
Fosfotransferasas (Aceptor de Grupo Alcohol) , Alcaloides de Cinchona , Demecolcina , Simulación del Acoplamiento Molecular , Fosfotransferasas (Aceptor de Grupo Alcohol)/química
12.
Saudi J Biol Sci ; 28(4): 2423-2431, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33526965

RESUMEN

Coronavirus disease 2019 (COVID-19) has emerged from China and globally affected the entire population through the human-to-human transmission of a newly emerged virus called severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The genome of SARS-CoV-2 encodes several proteins that are essential for multiplication and pathogenesis. The main protease (Mpro or 3CLpro) of SARS-CoV-2 plays a central role in its pathogenesis and thus is considered as an attractive drug target for the drug design and development of small-molecule inhibitors. We have employed an extensive structure-based high-throughput virtual screening to discover potential natural compounds from the ZINC database which could inhibit the Mpro of SARS-CoV-2. Initially, the hits were selected on the basis of their physicochemical and drug-like properties. Subsequently, the PAINS filter, estimation of binding affinities using molecular docking, and interaction analyses were performed to find safe and potential inhibitors of SARS-CoV-2 Mpro. We have identified ZINC02123811 (1-(3-(2,5,9-trimethyl-7-oxo-3-phenyl-7H-furo[3,2-g]chromen-6-yl)propanoyl)piperidine-4-carboxamide), a natural compound bearing appreciable affinity, efficiency, and specificity towards the binding pocket of SARS-CoV-2 Mpro. The identified compound showed a set of drug-like properties and preferentially binds to the active site of SARS-CoV-2 Mpro. All-atom molecular dynamics (MD) simulations were performed to evaluate the conformational dynamics, stability and interaction mechanism of Mpro with ZINC02123811. MD simulation results indicated that Mpro with ZINC02123811 forms a stable complex throughout the trajectory of 100 ns. These findings suggest that ZINC02123811 may be further exploited as a promising scaffold for the development of potential inhibitors of SARS-CoV-2 Mpro to address COVID-19.

13.
J Biomol Struct Dyn ; 39(1): 35-44, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-31847782

RESUMEN

Protection of telomeres 1 (POT1) is a component of the shelterin complex which is crucial for the regulation of telomere length and maintenance. Many naturally occurring mutations in the POT1 gene have been found to be associated with cardiac angiosarcoma, glioma, familial melanoma, and chronic lymphocytic leukemia. In particular, Y89C is a naturally occurring mutation of POT1, responsible for familial melanoma, and the molecular basis of this mutation is unexplored. In this study, we have extensively analyzed the structure of WT and Y89C mutant of POT1 to see the change in the conformational dynamics, free energy landscape, molecular motions and configurational frustration using molecular dynamics (MD) and other bioinformatics approaches. Y89C mutation shows a significant change in the backbone orientation, compactness, residual fluctuation, solvent accessibility, and hydrogen bonding, suggesting an overall destabilization of the protein structure. Besides, essential dynamics, conformation, magnitude, direction of motion and frustration analysis further suggesting the structural loss in POT1 due to Y89C mutation. Free energy landscape analysis also indicates the presence of a single well-defined free-energy minima in case of WT compared to multiple wells defined free energy minima observed in Y89C, clearly suggesting that this mutation leads to reduce the stability of POT1. This study possibly provides a valuable path to understand the molecular basis of Y89C-mediated development of familial melanoma.Communicated by Ramaswamy H. Sarma.


Asunto(s)
Melanoma , Neoplasias Cutáneas , Humanos , Melanoma/genética , Mutación , Complejo Shelterina , Telómero/genética , Proteínas de Unión a Telómeros/genética
14.
J Biomol Struct Dyn ; 39(5): 1781-1794, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-32141394

RESUMEN

MAP/Microtubule affinity regulating kinase 4 (MARK4) plays an important role in the regulation of microtubule dynamics by phosphorylation of tau protein. A higher expression of MARK4 is observed in the glioblastoma multiforme (GBM) cell lines. We identified eight synonymous and non-synonymous mutations in the MARK4 gene related to GBM in The Cancer Genome Atlas (TCGA) consortium. Out of these, three non-synonymous mutations were found in the catalytic domain of the protein (Lys231Asn, Tyr247His and Arg265Gln), were selected to see the possible deleterious effects on the structure and function using the cutting-edge in-silico tools. In addition, molecular dynamics simulation, principal component analysis, dynamic cross correlation matrix analysis and correlation network analysis were performed to gain insights into the conformation of the MARK4 and its mutants. We found that, Tyr247His shows a maximum deleterious impact, reflected from structural deviation in comparison to Lys231Asn and Arg265Gln. In conclusion, Tyr247His mutant of MARK4 has relatively higher chances of affecting the structure and function of the protein thus leading to abnormal MARK4 activity which is associated to GBM.Communicated by Ramaswamy H. Sarma.


Asunto(s)
Glioblastoma , Proteínas Serina-Treonina Quinasas/genética , Glioblastoma/genética , Humanos , Simulación de Dinámica Molecular , Mutación , Proteínas Serina-Treonina Quinasas/metabolismo
15.
ACS Omega ; 5(24): 14720-14729, 2020 Jun 23.
Artículo en Inglés | MEDLINE | ID: mdl-32596609

RESUMEN

Sphingosine kinase 1 (SphK1) is an oncogenic lipid kinase that catalyzes the formation of sphingosine-1-phosphate via phosphorylation of sphingosine and known to play a crucial role in angiogenesis, lymphocyte trafficking, signal transduction pathways, and response to apoptotic stimuli. SphK1 has received attention because of its involvement in varying types of cancer and inflammatory diseases such as rheumatoid arthritis, diabetes, renal fibrosis, pulmonary fibrosis, asthma, and neurodegenerative disorders. In the malignancies of breast, lung, uterus, ovary, kidney, and leukemia, overexpression of SphK1 has been reported and thus considered as a potential drug target. In this study, we have performed virtual high-throughput screening of ∼90,000 natural products from the ZINC database to find potential SphK1-inhibitors. Initially, the hits were selected by applying absorption, distribution, metabolism, excretion, and toxicity properties, Lipinski's rule, and PAINS filters. Further, docking analysis was performed to estimate the binding affinities and specificity to find safe and effective preclinical leads against SphK1. Two compounds, ZINC05434006 and ZINC04260971, bearing appreciable binding affinity and SphK1 selectivity were selected for 100 ns molecular dynamics (MD) simulations under explicit water conditions. The all-atom MD simulation results suggested that the ZINC05434006 and ZINC04260971 binding induces a slight structural change and stabilizes the SphK1 structure. In conclusion, we propose natural compounds, ZINC05434006 and ZINC04260971, as potential inhibitors of SphK1, which may be further exploited as potential leads to develop effective therapeutics against SphK1-associated diseases including cancer after in vitro and in vivo validations.

16.
J Biomol Struct Dyn ; 38(13): 3892-3907, 2020 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-31512980

RESUMEN

Microtubule affinity regulating kinase 4 (MARK4) plays essential role in the tau-assisted regulation of microtubule dynamics. Over expression of MARK4 causes early phosphorylation of Ser262 of tau protein which is essential for microtubule binding. Hyperphosphorylation of tau protein causes the formation of paired helical fragments and neurofibrillary tangles, the hallmarks of Alzheimer's disease. Targeting the modulation of MARK4 activity is an effective strategy for therapeutic intervention of Alzheimer's and other MARK4 associated neurodegenerative diseases. Having role of pyrazolopyrimidine derivatives in the therapeutic management of neurodegenerative diseases, we have tried to estimate their binding affinity with the MARK4. We performed in silico screening of 59 pyrazolopyrimidine derivatives against MARK4 and obtained a few best possible inhibitors. Molecular docking-based interaction analysis suggested five potential leads that were further analyzed using molecular dynamics simulations, MM/PBSA, principal component analysis and graph theory based dynamic network analysis to observe structural changes caused due to ligand binding. All these computational analyses suggested that compounds with PubChem IDs: 91895678, 91895679, 91895692, 91145515 and 90794095 may be further exploited to address Alzheimer's and other neurodegenerative diseases.Communicated by Ramaswamy H. Sarma.


Asunto(s)
Enfermedad de Alzheimer , Enfermedad de Alzheimer/tratamiento farmacológico , Humanos , Microtúbulos/metabolismo , Simulación del Acoplamiento Molecular , Fosforilación , Inhibidores de Proteínas Quinasas/farmacología , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas tau/metabolismo
17.
J Biomol Struct Dyn ; 38(12): 3610-3620, 2020 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-31496427

RESUMEN

Glutathione (GU), an endogenous antioxidant tripeptide, is frequently transferred in the human brain through N-methyl-d-aspartate receptor (NMDAR), profusely expressed at the blood-brain barrier (BBB) junction. GU, also modifies the characteristics of tight junction proteins (occludin and claudin) at the site of BBB by depolarizing the enzyme, protein tyrosine phosphatase that manifests its usefulness for passive delivery of nanocarriers to the brain. GU, thus, represents itself as an ideal ligand for the surface decoration of nanocarriers to successfully administer them across the brain via receptor-mediated drug delivery pathway. Hence, we have employed here, in-silico approaches to identify the potential GU-like molecules, as appropriate ligand(s) for surface engineering of nanoconstruct with the purpose of attaining targeted drug delivery to the brain. Structure-based virtual screening methods was used to filter PubChem database for the identification of bioactive compounds with >95% structure similarity with GU. We have further screened the compounds against NMDAR using molecular docking approach. Top hits were selected based on their high binding affinities and selectivity towards NMDAR, and their binding pattern was analysed in detail. Finally, all atom molecular dynamics simulation for 100 ns was carried out on free NMDAR and in-presence of the selected GU-like compound, gamma-l-glutamyl-l-cysteine to evaluate complex stability and structural dynamics. In conclusion, gamma-l-glutamyl-l-cysteine may act as potential binding partner of NMDAR which can further be evaluated in drug delivery system to brain across the BBB.Communicated by Ramaswamy H. Sarma.


Asunto(s)
Cisteína , Preparaciones Farmacéuticas , Encéfalo , Sistemas de Liberación de Medicamentos , Glutatión , Humanos , Simulación del Acoplamiento Molecular
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...