Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Ecotoxicol Environ Saf ; 272: 116057, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38335574

RESUMEN

A surge in the number of anthropogenic pollutants has been caused by increasing industrial activities. Nanoplastics are spotlighted as a new aquatic pollutant that are a threat to microbes and larger organisms. Our previous study showed that the subinhibitory concentrations of aquatic pollutants such as phenol and formalin act as signaling molecules and modulate global gene expression and metabolism. In this study, we aimed to investigate the impact of a new type of anthropogenic contaminant, polystyrene (PS) nanoplastics, on the expression of key virulence factors in zoonotic pathogen Edwardsiella piscicida and the assessment of potential changes in the susceptibility of zebrafish as a model host. The TEM data indicated a noticeable change in the cell membrane indicating that PS particles were possibly entering the bacterial cells. Transcriptome analyses performed to identify the differentially expressed genes upon PS exposure revealed that the genes involved in major virulence factor type VI secretion system (T6SS) were down-regulated. However, the expression of T6SS-related genes was recovered from the PS adapted E. piscicida when nanoplastics are free. This demonstrated the hypervirulence of pathogen in infection assays with both cell lines and in vivo zebrafish model. Therefore, this study provides experimental evidence elucidating the direct regulatory impact of nanoplastics influx into aquatic ecosystems on fish pathogenic bacteria, notably influencing the expression of virulence factors.


Asunto(s)
Edwardsiella , Contaminantes Ambientales , Enfermedades de los Peces , Animales , Virulencia/genética , Pez Cebra/genética , Pez Cebra/metabolismo , Microplásticos/toxicidad , Poliestirenos/toxicidad , Ecosistema , Factores de Virulencia/genética , Expresión Génica , Proteínas Bacterianas/metabolismo
2.
Antibiotics (Basel) ; 13(1)2024 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-38247641

RESUMEN

The symbiotic community of microorganisms in the gut plays an important role in the health of the host. While many previous studies have been performed on the interactions between the gut microbiome and the host in mammals, studies in fish are still lacking. In this study, we investigated changes in the intestinal microbiome and pathogen susceptibility of zebrafish (Danio rerio) following chronic antibiotics exposure. The chronic antibiotics exposure assay was performed on zebrafish for 30 days using oxytetracycline (Otc), sulfamethoxazole/trimethoprim (Smx/Tmp), or erythromycin (Ery), which are antibiotics widely used in the aquaculture industry. The microbiome analysis indicated that Fusobacteria, Proteobacteria, Firmicutes, and Bacteroidetes were the dominant phyla in the gut microbiome of the zebrafish used in this study. However, in Smx/Tmp-treated zebrafish, the compositions of Fusobacteria and Proteobacteria were changed significantly, and in Ery-treated zebrafish, the compositions of Proteobacteria and Firmicutes were altered significantly. Although alpha diversity analysis showed that there was no significant difference in the richness, beta diversity analysis revealed a community imbalance in the gut microbiome of all chronically antibiotics-exposed zebrafish. Intriguingly, in zebrafish with dysbiosis in the gut microbiome, the pathogen susceptibility to Edwardsiella piscicida, a representative Gram-negative fish pathogen, was reduced. Gut microbiome imbalance resulted in a higher count of goblet cells in intestinal tissue and an upregulation of genes related to the intestinal mucosal barrier. In addition, as innate immunity was enhanced by the increased mucosal barrier, immune and stress-related gene expression in the intestinal tissue was downregulated. In this study, we provide new insight into the effect of gut microbiome dysbiosis on pathogen susceptibility.

3.
Gigascience ; 9(9)2020 09 22.
Artículo en Inglés | MEDLINE | ID: mdl-32960942

RESUMEN

BACKGROUND: Kava is an important neuroactive medicinal plant. While kava has a large global consumer footprint for its clinical and recreational use, factors related to its use lack standardization and the tissue-specific metabolite profile of its neuroactive constituents is not well understood. RESULTS: Here we characterized the metabolomic profile and spatio-temporal characteristics of tissues from the roots and stems using cross-platform metabolomics and a 3D imaging approach. Gas chromatography-mass spectrometry and liquid chromatography-mass spectrometry revealed the highest content of kavalactones in crown root peels and lateral roots. Infrared matrix-assisted laser desorption electrospray ionization (IR-MALDESI) imaging revealed a unique tissue-specific presence of each target kavalactone. X-ray micro-computed tomography analysis demonstrated that lateral roots have morphological characteristics suitable for synthesis of the highest content of kavalactones. CONCLUSIONS: These results provide mechanistic insights into the social and clinical practice of the use of only peeled roots by linking specific tissue characteristics to concentrations of neuroactive compounds.


Asunto(s)
Kava , Imagenología Tridimensional , Lactonas , Metabolómica , Microtomografía por Rayos X
4.
Food Sci Biotechnol ; 29(1): 27-33, 2020 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-31976124

RESUMEN

Polypores are cosmopolitan mushrooms, widely investigated for their beneficial properties in combatting multidrug resistant pathogens. The present study focuses on the need for new, naturally sourced antimicrobial and antioxidant compounds from mushrooms. The antioxidant and antibacterial activity of the phenolic extract of strains of Trametes polyzona (Pers.) Justo, were investigated. Strains of T. polyzona were analyzed for total phenolic content, Trolox antioxidant equivalent, DPPH radical scavenging and antibacterial activities. The amplification of the ribosomal DNA-ITS fragments from DNA of selected mushrooms was carried out using ITS1 and ITS4 primers. The antibacterial activity of phenolic extracts of T. polyzona was comparable to the antibiotics, ceftazidime and erythromycin. T. polyzona extracts inhibited the growth of the different strains of K. pneumoniae, E. coli, S. aureus, and S. enterica tested in this study. The results of the study demonstrate that, T. polyzona can be a potential source of antimicrobial and antioxidant compounds.

5.
J Tradit Complement Med ; 7(1): 50-53, 2017 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-28053888

RESUMEN

Ayurveda is considered as one of the oldest of the traditional systems of medicine (TSMs) accepted worldwide. The ancient wisdom in this traditional system of medicine is still not exhaustively explored. The junction of the rich knowledge from different traditional systems of medicine can lead to new avenues in herbal drug discovery process. The lack of the understanding of the differences and similarities between the theoretical doctrines of these systems is the major hurdle towards their convergence apart from the other impediments in the discovery of plant based medicines. This review aims to bring into limelight the age old history and the basic principles of Ayurveda. This would help the budding scholars, researchers and practitioners gain deeper perspicuity of traditional systems of medicine, facilitate strengthening of the commonalities and overcome the challenges towards their global acceptance and harmonization of such medicinal systems.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA