Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Membranes (Basel) ; 13(12)2023 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-38132905

RESUMEN

Deciphering the dynamics of water transport across bronchial epithelial cell monolayers is pivotal for unraveling respiratory physiology and pathology. In this study, we employ an advanced microfluidic system to explore bidirectional water transport across 16HBE14σ bronchial epithelial cells. Previous experiments unveiled electroneutral multiple ion transport, with chloride ions utilizing transcellular pathways and sodium ions navigating both paracellular and transcellular routes. Unexpectedly, under isoosmotic conditions, rapid bidirectional movement of Na+ and Cl- was observed, leading to the hypothesis of a substantial transport of isoosmotic solution (145 mM NaCl) across cell monolayers. To validate this conjecture, we introduce an innovative microfluidic device, offering a 500-fold sensitivity improvement in quantifying fluid flow. This system enables the direct measurement of minuscule fluid volumes traversing cell monolayers with unprecedented precision. Our results challenge conventional models, indicating a self-regulating mechanism governing water transport that involves the CFTR channel and anion exchangers. In healthy subjects, equilibrium is achieved at an apical potential of Δφap = -30 mV, while subjects with cystic fibrosis exhibit modulation by an anion exchanger, reaching equilibrium at [Cl] = 67 mM in the airway surface liquid. This nuanced electrochemical basis for bidirectional water transport in bronchial epithelia sheds light on physiological intricacies and introduces a novel perspective for understanding respiratory conditions.

2.
Int J Mol Sci ; 24(17)2023 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-37685840

RESUMEN

Neurodegenerative diseases (NDs) are a diverse group of disorders characterized by the progressive degeneration and death of neurons, leading to a range of neurological symptoms. Despite the heterogeneity of these conditions, a common denominator is the implication of mitochondrial dysfunction in their pathogenesis. Mitochondria play a crucial role in creating biomolecules, providing energy through adenosine triphosphate (ATP) generated by oxidative phosphorylation (OXPHOS), and producing reactive oxygen species (ROS). When they're not functioning correctly, becoming fragmented and losing their membrane potential, they contribute to these diseases. In this review, we explore how mitochondria fuse and undergo fission, especially in the context of NDs. We discuss the genetic and protein mutations linked to these diseases and how they impact mitochondrial dynamics. We also look at the key regulatory proteins in fusion (MFN1, MFN2, and OPA1) and fission (DRP1 and FIS1), including their post-translational modifications. Furthermore, we highlight potential drugs that can influence mitochondrial dynamics. By unpacking these complex processes, we aim to direct research towards treatments that can improve life quality for people with these challenging conditions.


Asunto(s)
Dinámicas Mitocondriales , Enfermedades Neurodegenerativas , Humanos , Dinámicas Mitocondriales/genética , Enfermedades Neurodegenerativas/genética , Adenosina Trifosfato , Potenciales de la Membrana , Mitocondrias/genética
3.
Biosens Bioelectron ; 240: 115644, 2023 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-37660460

RESUMEN

Recent technological advancements in testing and monitoring instrumentation have greatly contributed to the progress in cancer treatment by surgical, chemotherapeutic and radiotherapeutic interventions. However, the mortality rate still remains high, calling for the development of new treatment strategies with higher efficacy. Extensive efforts driven in this direction have included broadening of early cancer screening and applying innovative theranostic nanotechnologies. They have been supported by platforms introduced to enable the detection and monitoring of cancer biomarkers, inhibitors, and other agents, able to slow down cancer progression and prevent metastasis. Despite of the well-recognized principles of the immune checkpoint blockade, the efficacy of immunotherapy achieved so far does not meet the well-founded expectations. For a successful cancer treatment, highly sensitive, robust, and inexpensive multiplex biosensors have to be designed to aid in the biomarkers monitoring and in the development of new inhibitors. In this review, we provide an overview of the efforts undertaken to aid in the development and monitoring of anticancer immunotherapy, based on the programmed cell-death immune checkpoint (PD-1/PDL-1) blockade, by designing biosensors for the detection of relevant cancer biomarkers and their inhibitors screening. This review also emphasizes alternative targets made by exosomes carrying PD-L1 overexpressed in cancer cells and passed into the excreted exosomes. Evaluated are also novel targeted drug delivery nanocarriers, providing simultaneous biosensing, thereby contributing to the emerging immune checkpoint cancer therapy. On the basis of the current trends and the emerging technologies, future perspectives of cancer diagnostics and treatment monitoring using biosensing platforms are projected.


Asunto(s)
Técnicas Biosensibles , Neoplasias , Detección Precoz del Cáncer , Receptor de Muerte Celular Programada 1 , Evaluación Preclínica de Medicamentos , Biomarcadores de Tumor , Neoplasias/diagnóstico , Neoplasias/tratamiento farmacológico
4.
Int J Mol Sci ; 23(15)2022 Aug 04.
Artículo en Inglés | MEDLINE | ID: mdl-35955835

RESUMEN

Novel high-performance biosensing devices, based on a microporous cellulose matrix, have been of great interest due to their high sensitivity, low cost, and simple operation. Herein, we report on the design and testing of portable paper-based immunostrips (IMS) for in-field blood typing in emergencies requiring blood transfusion. Cellulose fibrils of a paper membrane were functionalized with antibodies via supramolecular interactions. The formation of hydrogen bonds between IgM pentamer and cellulose fibers was corroborated using quantum mechanical calculations with a model cellulose chain and a representative amino acid sequence. In the proposed immunostrips, paper with a pore size of 3 µm dia. was used to enable functionalization of its channels with antibody molecules while blocking the red blood cells (RBC) from channel entering. Under the optimized test conditions, all blood types of AB0 and Rh system could be determined by naked eye examination, requiring only a small blood sample (3.5 µL). The durability of IgM immunostrips against storing has been tested. A new method of statistical evaluation of digitized blood agglutination images, compatible with a clinical five-level system, has been proposed. Critical parameters of the agglutination process have been established to enable future development of automatic blood typing with machine vision and digital data processing.


Asunto(s)
Antígenos de Grupos Sanguíneos , Tipificación y Pruebas Cruzadas Sanguíneas , Aglutinación , Celulosa/química , Inmunoglobulina M , Papel
5.
Nanomaterials (Basel) ; 10(8)2020 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-32823551

RESUMEN

The resonance energy transfer (RET) between an excited fluorescent probe molecule and a plasmonic nanoparticle (AuNP) has been investigated to evaluate the effect of protein molecules on the RET efficiency. We have found that the energy transfer to a functionalized AuNP can be modulated by a sub-monolayer film of programmed death-ligand 1 (PD-L1) protein. The interactions of PD-L1 with AuNP@Cit involve incorporation of the protein in AuNP shell and formation of a submonolayer adsorption film with voids enabling gated surface plasmon resonance energy transfer (SPRET). A model of the gated-RET system based on the protein size, estimated using Fisher-Polikarpov-Craievich density approximation, has been developed and can be utilized for other proteins, with minimum data requirement, as well. The value of the equilibrium constant KL determined for the Langmuir isotherm is high: KL = 1.27 × 108 M-1, enabling highly sensitive control of the gated-RET by PD-L1. Thus, with the gated-RET technique, one can determine PD-L1 within the dynamic range, extending from 1.2 to 50 nM. Moreover, we have found that the Gibbs free energy for PD-L1 binding to AuNP@Cit is -46.26 kJ/mol (-11.05 kcal/mol), indicating a strong adsorption with supramolecular interactions. The proposed gated-RET system, with the fluorescence intensity of the fluorophore probe molecule modulated by plasmonic quenching with AuNP and shielding of energy transfer by the adsorbed PD-L1 can be further developed for determination of PD-L1 in pharmaceutical formulations for immune checkpoint control in cancer therapy.

6.
Anal Bioanal Chem ; 411(26): 6899-6911, 2019 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-31407049

RESUMEN

Adenosine triphosphate (ATP) is the main energy source in cells and an important biomolecule participating in cellular reactions in living organisms. Since the ATP level changes dynamically reflecting the development of a debilitating disease or carcinogenesis, we have focused in this work on monitoring of the oligomycin (OMC)-modulated ATP synthase inhibition using a fluorescent-switching DNA aptamer designed for the detection of ATP (Apt(ATP)), as the model for studies of dynamic ATP level variation. The behavior of the ATP aptamer has been characterized using fluorescence spectroscopy. The Intramolecular fluorescence resonance energy transfer (iFRET) operates in the proposed aptamer from the FAM dye moiety to guanines of the aptamer G-quadruplex when the target ATP is present and binds to the aptamer changing its conformation. The iFRET process enables the detection of ATP down to the limit of detection, LOD = 17 µM, without resorting to any extra chemi-amplification schemes. The selectivity coefficients for relevant interferent triphosphates (UTP, GTP, and CTP) are low for the same concentration as that of ATP. We have demonstrated an efficient transfection of intact cells and OMC-treated SW480 colon cancer cells with Apt(ATP), using microscopic imaging, iFRET measurements, and cell viability testing with MTT method. The applicability of the switching DNA aptamer for the analysis of real samples, obtained by lysis of SW480 cells, was also tested. The proposed Apt(ATP) may be considered as a viable candidate for utilization in measurements of dynamic ATP level modulation in cells in different stages of cancer development and testing of new drugs in pharmacological studies. Graphical abstract.


Asunto(s)
Adenosina Trifosfato/análisis , Aptámeros de Nucleótidos/química , Técnicas Biosensibles/métodos , Transferencia Resonante de Energía de Fluorescencia/métodos , Adenosina Trifosfato/metabolismo , Línea Celular , Línea Celular Tumoral , Inhibidores Enzimáticos/farmacología , Colorantes Fluorescentes/química , G-Cuádruplex , Humanos , ATPasas de Translocación de Protón Mitocondriales/antagonistas & inhibidores , ATPasas de Translocación de Protón Mitocondriales/metabolismo , Neoplasias/metabolismo , Oligomicinas/farmacología
7.
Biosens Bioelectron ; 137: 58-71, 2019 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-31078841

RESUMEN

The development of biosensors for cancer biomarkers has recently been expanding rapidly, offering promising biomedical applications of these sensors as highly sensitive, selective, and inexpensive bioanalytical tools that can provide alternative methodology to that afforded by the advanced hyphenated-instrumental techniques. In this review, we focus particularly on the detection of a member of the inhibitor of apoptosis proteins (IAP) family, protein survivin (Sur), a ubiquitous re-organizer of the cell life cycle with the ability to inhibit the apoptosis and induce an enhanced proliferation leading to the unimpeded cancer growth and metastasis. Herein, we critically evaluate the progress in the development of novel biosensing systems and biosensors for the detection of two survivin (Sur) biomarkers: the Sur protein and its messenger RNA (Sur mRNA), including immunosensors, electrochemical piezo- and impedance-sensors, electrochemi-luminescence biosensors, genosensors based on oligonucleotide molecular beacons (MBs) with fluorescent or electrochemical transduction, as well as the microfluidic and related analytical platforms based on solution chemistry. The in-situ applications of survivin biomarkers' detection technologies to equip nanocarriers of the controlled drug delivery systems with MB-based fluorescence imaging capability, apoptosis control, and mitigation of the acquired drug resistance are also presented and critically evaluated. Finally, we turn the attention to the application of biosensors for the analysis of Sur biomarkers in exosomes and circulating tumor cells for a non-invasive liquid biopsy. The prospect of a widespread screening for early cancers, based on inexpensive point-of-care testing using biosensors and multiplex biosensor arrays, as a means of reducing the high cancer fatality rate, is discussed.


Asunto(s)
Proteínas Reguladoras de la Apoptosis/aislamiento & purificación , Técnicas Biosensibles , Neoplasias/diagnóstico , Survivin/aislamiento & purificación , Apoptosis , Proteínas Reguladoras de la Apoptosis/genética , Detección Precoz del Cáncer , Humanos , Neoplasias/genética , ARN Mensajero/genética , ARN Mensajero/aislamiento & purificación , Survivin/genética
8.
Micromachines (Basel) ; 9(5)2018 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-30424184

RESUMEN

Herein, we describe a novel method for the assessment of droplet viscosity moving inside microfluidic channels. The method allows for the monitoring of the rate of the continuous growth of bacterial culture. It is based on the analysis of the hydrodynamic resistance of a droplet that is present in a microfluidic channel, which affects its motion. As a result, we were able to observe and quantify the change in the viscosity of the dispersed phase that is caused by the increasing population of interacting bacteria inside a size-limited system. The technique allows for finding the correlation between the viscosity of the medium with a bacterial culture and its optical density. These features, together with the high precision of the measurement, make our viscometer a promising tool for various experiments in the field of analytical chemistry and microbiology, where the rigorous control of the conditions of the reaction and the monitoring of the size of bacterial culture are vital.

9.
Micromachines (Basel) ; 9(9)2018 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-30424402

RESUMEN

Emerging microfluidic technology has introduced new precision controls over reaction conditions. Owing to the small amount of reagents, microfluidics significantly lowers the cost of carrying a single reaction. Moreover, in two-phase systems, each part of a dispersed fluid can be treated as an independent chemical reactor with a volume from femtoliters to microliters, increasing the throughput. In this work, we propose a microfluidic device that provides continuous recirculation of droplets in a closed loop, maintaining low consumption of oil phase, no cross-contamination, stabilized temperature, a constant condition of gas exchange, dynamic feedback control on droplet volume, and a real-time optical characterization of bacterial growth in a droplet. The channels (tubing) and junction cubes are made of Teflon fluorinated ethylene propylene (FEP) to ensure non-wetting conditions and to prevent the formation of biofilm, which is particularly crucial for biological experiments. We show the design and operation of a novel microfluidic loop with the circular motion of microdroplet reactors monitored with optical sensors and precision temperature controls. We have employed the proposed system for long term monitoring of bacterial growth during the antibiotic chloramphenicol treatment. The proposed system can find applications in a broad field of biomedical diagnostics and therapy.

10.
Nanomaterials (Basel) ; 8(7)2018 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-29987217

RESUMEN

The anti-apoptotic protein survivin is one of the most promising cancer biomarkers owing to its high expression in human cancers and rare occurrence in normal adult tissues. In this work, we have investigated the role of supramolecular interactions between a graphene oxide (GO) nanosheet nanocarrier and a survivin molecular beacon (SurMB), functionalized by attaching fluorophore Joe and quencher Dabcyl (SurMB-Joe). Molecular dynamics simulations revealed hydrogen bonding of Joe moiety and Dabcyl to GO carriers that considerably increase the SurMB-GO bonding strength. This was confirmed in experimental work by the reduced fluorescence background in the OFF state, thereby increasing the useful analytical signal range for mRNA detection. A new mechanism of hairpin⁻hairpin interaction of GO@SurMB with target oligonucleotides has been proposed. A low limit of detection, LOD = 16 nM (S/N = 3), has been achieved for complementary tDNA using GO@SurMB-Joe nanocarriers. We have demonstrated an efficient internalization of SurMB-Joe-loaded GO nanocarriers in malignant SW480 cells. The proposed tunability of the bonding strength in the attached motifs for MBs immobilized on nanocarriers, via structural modifications, should be useful in gene delivery systems to enhance the efficacy of gene retention, cell transfection and genomic material survivability in the cellular environment.

11.
ACS Appl Mater Interfaces ; 10(20): 17028-17039, 2018 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-29687994

RESUMEN

Cancer biomarkers offer unique prospects for the development of cancer diagnostics and therapy. One of such biomarkers, protein survivin (Sur), exhibits strong antiapoptotic and proliferation-enhancing properties and is heavily expressed in multiple cancers. Thus, it can be utilized to provide new modalities for modulating the cell-growth rate, essential for effective cancer treatment. Herein, we have focused on the development of a new survivin-based cancer detection platform for colorectal cancer cells SW480 using a turn-on fluorescence oligonucleotide molecular beacon (MB) probe, encoded to recognize Sur messenger RNA (mRNA). Contrary to the expectations, we have found that both the complementary target oligonucleotide strands as well as the single- and double-mismatch targets, instead of exhibiting the anticipated simple random conformations, preferentially formed secondary structure motifs by folding into small-loop hairpin structures. Such a conformation may interfere with, or even undermine, the biorecognition process. To gain better understanding of the interactions involved, we have replaced the classical Tyagi-Kramer model of interactions between a straight target oligonucleotide strand and a hairpin MB with a new model to account for the hairpin-hairpin interactions as the biorecognition principle. A detailed mechanism of these interactions has been proposed. Furthermore, in experimental work, we have demonstrated an efficient transfection of malignant SW480 cells with SurMB probes containing a fluorophore Joe (SurMB-Joe) using liposomal nanocarriers. The green emission from SurMB-Joe in transfected cancer cells, due to the hybridization of the SurMB-Joe loop with Sur mRNA hairpin target, corroborates Sur overexpression. On the other hand, healthy human-colon epithelial cells CCD 841 CoN show only negligible expression of survivin mRNA. These experiments provide the proof-of-concept for distinguishing between the cancer and normal cells by the proposed hairpin-hairpin interaction method. The single nucleotide polymorphism sensitivity and a low detection limit of 26 nM (S/N = 3σ) for complementary targets have been achieved.


Asunto(s)
Survivin/genética , Humanos , Hibridación de Ácido Nucleico , Oligonucleótidos , ARN Mensajero , Transfección
12.
Biosens Bioelectron ; 88: 114-121, 2017 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-27499383

RESUMEN

Dysfunctional mitochondria appear to be involved in many diseases through their role in respiration, reactive oxygen species generation, and energy production. To aid in the design of new biosensors based on mitochondria (MT), we have investigated the feasibility of detecting ion fluxes through the MT-membrane K+-ion channels using piezosensors with MTs immobilized either by hydrogen bonding or thin polypyrrole (PPy) binding film. We have demonstrated for the first time that the mitochondria-based piezosensors are able to detect ion fluxes and thus be utilized for drug development aimed at ion channel opener- or inhibitor-function. The quartz crystal resonator responding only to mass changes in the lower part of the MT film, penetrated by the acoustic wave, is able to detect a pronounced cationic dynamics in PPy-bonded MT piezosensors despite of the undoped-PPy preference for pure anion dynamics. The control experiments performed by resonance elastic light scattering (RELS) confirmed MT swelling/shrinking, ion dynamics, and osmotic water transfer in MTs, as well as the effects of exposure to a drug valinomycin at sub-nanomolar concentrations.


Asunto(s)
Técnicas Biosensibles/instrumentación , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Canales de Potasio/metabolismo , Línea Celular , Dispersión Dinámica de Luz/instrumentación , Técnicas Electroquímicas/instrumentación , Electrodos , Diseño de Equipo , Humanos , Transporte Iónico/efectos de los fármacos , Ionóforos/farmacología , Membranas Mitocondriales/metabolismo , Tecnicas de Microbalanza del Cristal de Cuarzo/instrumentación , Transductores , Valinomicina/farmacología
13.
Lab Chip ; 16(19): 3695-9, 2016 10 07.
Artículo en Inglés | MEDLINE | ID: mdl-27605396

RESUMEN

Here, we demonstrate a novel method of measurement which determines precisely the hydrodynamic resistance of a droplet flowing through a channel. The obtained results show that the hydrodynamic resistance of a droplet in a microchannel achieves its maximum for lengths of the droplet ranging from 3w to 4w and that interactions between beads in a train exist.

14.
Lab Chip ; 16(12): 2198-210, 2016 06 21.
Artículo en Inglés | MEDLINE | ID: mdl-27182628

RESUMEN

We propose and test a new whole-Teflon gate valve for handling droplets. The valve allows droplet plugs to pass through without disturbing them. This is possible due to the geometric design, the choice of material and lack of any pulses of flow generated by closing or opening the valve. The duct through the valve resembles a simple segment of tubing, without constrictions, change in lumen or side pockets. There are no extra sealing materials with different wettability or chemical resistance. The only material exposed to liquids is FEP Teflon, which is resistant to aggressive chemicals and fully biocompatible. The valve can be integrated into microfluidic systems: we demonstrate a complex system for culturing bacteria in hundreds of microliter droplet chemostats. The valve effectively isolates modules of the system to increase precision of operations on droplets. We verified that the valve allowed millions of droplet plugs to safely pass through, without any cross-contamination with bacteria between the droplets. The valve can be used in automating complex microfluidic systems for experiments in biochemistry, biology and organic chemistry.

15.
Lab Chip ; 15(2): 541-8, 2015 Jan 21.
Artículo en Inglés | MEDLINE | ID: mdl-25412368

RESUMEN

This paper demonstrates a microfluidic system that automates i) formation of a lipid bilayer at the interface between a pair of nanoliter-sized aqueous droplets in oil, ii) exchange of one droplet of the pair to form a new bilayer, and iii) current measurements on single proteins. A new microfluidic architecture is introduced - a set of traps designed to localize the droplets with respect to each other and with respect to the recording electrodes. The system allows for automated execution of experimental protocols by active control of the flow on chip with the use of simple external valves. Formation of stable artificial lipid bilayers, incorporation of α-hemolysin into the bilayers and electrical measurements of ionic transport through the protein pore are demonstrated.


Asunto(s)
Técnicas Electroquímicas/métodos , Proteínas Hemolisinas/análisis , Membrana Dobles de Lípidos/química , Técnicas Analíticas Microfluídicas/instrumentación , Alcanos/química , Automatización , Técnicas Electroquímicas/instrumentación , Electrodos , Proteínas Hemolisinas/metabolismo , Membrana Dobles de Lípidos/metabolismo , Aceites/química , Fosfatidilcolinas/química , Staphylococcus aureus/metabolismo
16.
Artículo en Inglés | MEDLINE | ID: mdl-26764805

RESUMEN

The simplest microfluidic network (a loop) comprises two parallel channels with a common inlet and a common outlet. Recent studies that assumed a constant cross section of the channels along their length have shown that the sequence of droplets entering the left (L) or right (R) arm of the loop can present either a uniform distribution of choices (e.g., RLRLRL...) or long sequences of repeated choices (RRR...LLL), with all the intermediate permutations being dynamically equivalent and virtually equally probable to be observed. We use experiments and computer simulations to show that even small variation of the cross section along channels completely shifts the dynamics either into the strong preference for highly grouped patterns (RRR...LLL) that generate system-size oscillations in flow or just the opposite-to patterns that distribute the droplets homogeneously between the arms of the loop. We also show the importance of noise in the process of self-organization of the spatiotemporal patterns of droplets. Our results provide guidelines for rational design of systems that reproducibly produce either grouped or homogeneous sequences of droplets flowing in microfluidic networks.

17.
Nanoscale ; 6(17): 10340-6, 2014 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-25074030

RESUMEN

We propose a scaling equation describing transport properties (diffusion and viscosity) in the solutions of colloidal particles. We apply the equation to 23 different systems including colloids and proteins differing in size (range of diameters: 4 nm to 1 µm), and volume fractions (10(-3)-0.56). In solutions under study colloids/proteins interact via steric, hydrodynamic, van der Waals and/or electrostatic interactions. We implement contribution of those interactions into the scaling law. Finally we use our scaling law together with the literature values of the barrier for nucleation to predict crystal nucleation rates of hard-sphere like colloids. The resulting crystal nucleation rates agree with existing experimental data.

18.
Lab Chip ; 13(22): 4308-11, 2013 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-24064861

RESUMEN

We report automated generation of arbitrary sequences of multiple microdroplets with online and individual control over the number of cores and volumes of all the constituents (cores and shells) of each of the multiple droplets. We show that a given sequence of volumes of the cores always folds to the same final three-dimensional architecture. The method presents the first proof-of-concept for the ability to design the three-dimensional structure of multiple droplets. We discuss the potential use of the technique in the formulation of predetermined distribution of drug release capsules and for automated generation of functional chemical microdroplet networks.

19.
Lab Chip ; 13(20): 4096-102, 2013 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-23970204

RESUMEN

We present microfluidic modules (traps) that allow us to lock, shift, dose and merge micro-aliquots of liquid precisely. The precision is hard-wired into the geometry of the device: small values of the capillary number guarantee reproducibility of operation over a range of rates of flow that need not be controlled precisely. The modules can be integrated into systems that perform complicated protocols on micro-droplets while not requiring precision in forcing the flow.


Asunto(s)
Hidrodinámica , Técnicas Analíticas Microfluídicas/métodos , Técnicas Analíticas Microfluídicas/instrumentación , Integración de Sistemas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA