Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Heliyon ; 9(6): e16724, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37313176

RESUMEN

Background and objective: Predicting the long-term expansion and remodeling of the left ventricle in patients is challenging task but it has the potential to be clinically very useful. Methods: In our study, we present machine learning models based on random forests, gradient boosting, and neural networks, used to track cardiac hypertrophy. We collected data from multiple patients, and then the model was trained using the patient's medical history and present level of cardiac health. We also demonstrate a physical-based model, using the finite element procedure to simulate the development of cardiac hypertrophy. Results: Our models were used to forecast the evolution of hypertrophy over six years. The machine learning model and finite element model provided similar results. Conclusions: The finite element model is much slower, but it's more accurate compared to the machine learning model since it's based on physical laws guiding the hypertrophy process. On the other hand, the machine learning model is fast but the results can be less trustworthy in some cases. Both of our models, enable us to monitor the development of the disease. Because of its speed machine learning model is more likely to be used in clinical practice. Further improvements to our machine learning model could be achieved by collecting data from finite element simulations, adding them to the dataset, and retraining the model. This can result in a fast and more accurate model combining the advantages of physical-based and machine learning modeling.

2.
Life (Basel) ; 12(10)2022 Oct 09.
Artículo en Inglés | MEDLINE | ID: mdl-36294999

RESUMEN

Hypertrophic cardiomyopathy (HCM) is a relatively common inherited cardiac disease that results in left ventricular hypertrophy. Machine learning uses algorithms to study patterns in data and develop models able to make predictions. The aim of this study is to identify HCM subtypes and examine the mechanisms of HCM using machine learning algorithms. Clinical and laboratory findings of 143 adult patients with a confirmed diagnosis of nonobstructive HCM are analyzed; HCM subtypes are determined by clustering, while the presence of different HCM features is predicted in classification machine learning tasks. Four clusters are determined as the optimal number of clusters for this dataset. Models that can predict the presence of particular HCM features from other genotypic and phenotypic information are generated, and subsets of features sufficient to predict the presence of other features of HCM are determined. This research proposes four subtypes of HCM assessed by machine learning algorithms and based on the overall phenotypic expression of the participants of the study. The identified subsets of features sufficient to determine the presence of particular HCM aspects could provide deeper insights into the mechanisms of HCM.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...