Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 14(1): 15452, 2024 07 04.
Artículo en Inglés | MEDLINE | ID: mdl-38965349

RESUMEN

Ion-beam radiotherapy is an advanced cancer treatment modality offering steep dose gradients and a high biological effectiveness. These gradients make the therapy vulnerable to patient-setup and anatomical changes between treatment fractions, which may go unnoticed. Charged fragments from nuclear interactions of the ion beam with the patient tissue may carry information about the treatment quality. Currently, the fragments escape the patient undetected. Inter-fractional in-vivo treatment monitoring based on these charged nuclear fragments could make ion-beam therapy safer and more efficient. We developed an ion-beam monitoring system based on 28 hybrid silicon pixel detectors (Timepix3) to measure the distribution of fragment origins in three dimensions. The system design choices as well as the ion-beam monitoring performance measurements are presented in this manuscript. A spatial resolution of 4 mm along the beam axis was achieved for the measurement of individual fragment origins. Beam-range shifts of 1.5 mm were identified in a clinically realistic treatment scenario with an anthropomorphic head phantom. The monitoring system is currently being used in a prospective clinical trial at the Heidelberg Ion Beam Therapy Centre for head-and-neck as well as central nervous system cancer patients.


Asunto(s)
Fantasmas de Imagen , Humanos , Radioterapia de Iones Pesados/métodos , Dosificación Radioterapéutica
2.
Phys Med Biol ; 68(18)2023 09 14.
Artículo en Inglés | MEDLINE | ID: mdl-37607560

RESUMEN

Objective.This work presents a method for enhanced detection, imaging, and measurement of the thermal neutron flux.Approach. Measurements were performed in a water tank, while the detector is positioned out-of-field of a 20 MeV ultra-high pulse dose rate electron beam. A semiconductor pixel detector Timepix3 with a silicon sensor partially covered by a6LiF neutron converter was used to measure the flux, spatial, and time characteristics of the neutron field. To provide absolute measurements of thermal neutron flux, the detection efficiency calibration of the detectors was performed in a reference thermal neutron field. Neutron signals are recognized and discriminated against other particles such as gamma rays and x-rays. This is achieved by the resolving power of the pixel detector using machine learning algorithms and high-resolution pattern recognition analysis of the high-energy tracks created by thermal neutron interactions in the converter.Main results. The resulting thermal neutrons equivalent dose was obtained using conversion factor (2.13(10) pSv·cm2) from thermal neutron fluence to thermal neutron equivalent dose obtained by Monte Carlo simulations. The calibrated detectors were used to characterize scattered radiation created by electron beams. The results at 12.0 cm depth in the beam axis inside of the water for a delivered dose per pulse of 1.85 Gy (pulse length of 2.4µs) at the reference depth, showed a contribution of flux of 4.07(8) × 103particles·cm-2·s-1and equivalent dose of 1.73(3) nSv per pulse, which is lower by ∼9 orders of magnitude than the delivered dose.Significance. The presented methodology for in-water measurements and identification of characteristic thermal neutrons tracks serves for the selective quantification of equivalent dose made by thermal neutrons in out-of-field particle therapy.


Asunto(s)
Algoritmos , Electrones , Calibración , Rayos gamma , Neutrones
3.
Phys Med ; 106: 102529, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36657235

RESUMEN

Stray radiation produced by ultra-high dose-rates (UHDR) proton pencil beams is characterized using ASIC-chip semiconductor pixel detectors. A proton pencil beam with an energy of 220 MeV was utilized to deliver dose rates (DR) ranging from conventional radiotherapy DRs up to 270 Gy/s. A MiniPIX Timepix3 detector equipped with a silicon sensor and integrated readout electronics was used. The chip-sensor assembly and chipboard on water-equivalent backing were detached and immersed in the water-phantom. The deposited energy, particle flux, DR, and the linear energy transfer (LET(Si)) spectra were measured in the silicon sensor at different positions both laterally, at different depths, and behind the Bragg peak. At low-intensity beams, the detector is operated in the event-by-event data-driven mode for high-resolution spectral tracking of individual particles. This technique provides precise energy loss response and LET(Si) spectra with radiation field composition resolving power. At higher beam intensities a rescaling of LET(Si) can be performed as the distribution of the LET(Si) spectra exhibits the same characteristics regardless of the delivered DR. The integrated deposited energy and the absorbed dose can be thus measured in a wide range. A linear response of measured absorbed dose was obtained by gradually increasing the delivered DR to reach UHDR beams. Particle tracking of scattered radiation in data-driven mode could be performed at DRs up to 0.27 Gy/s. In integrated mode, the saturation limits were not reached at the measured out-of-field locations up to the delivered DR of over 270 Gy/s. A good agreement was found between measured and simulated absorbed doses.


Asunto(s)
Terapia de Protones , Radiometría , Radiometría/métodos , Protones , Silicio , Transferencia Lineal de Energía , Agua , Terapia de Protones/métodos
4.
Phys Med ; 101: 79-86, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35985102

RESUMEN

The track structure of the signal measured by the semiconductor pixel detector Timepix3 was modelled in the Monte Carlo MCNP® code. A detailed model at the pixel-level (256 × 256 pixels, 55 × 55 µm2 pixel size) was developed and used to generate and store clusters of adjacent hit pixels observed in the measured data because of particle energy deposition path, charge sharing, and drift processes. An analytical model of charge sharing effect and the detector energy resolution was applied to the simulated data. The method will help the user sort the measured clusters and distinguish radiation components of mixed fields by determining the response of Timepix3 detector to particular particle types, energies, and incidence angles that cannot be measured separately.

5.
Phys Med ; 80: 134-150, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-33181444

RESUMEN

UHDpulse - Metrology for advanced radiotherapy using particle beams with ultra-high pulse dose rates is a recently started European Joint Research Project with the aim to develop and improve dosimetry standards for FLASH radiotherapy, very high energy electron (VHEE) radiotherapy and laser-driven medical accelerators. This paper gives a short overview about the current state of developments of radiotherapy with FLASH electrons and protons, very high energy electrons as well as laser-driven particles and the related challenges in dosimetry due to the ultra-high dose rate during the short radiation pulses. We summarize the objectives and plans of the UHDpulse project and present the 16 participating partners.


Asunto(s)
Electrones , Radiometría , Rayos Láser , Aceleradores de Partículas , Protones , Radioterapia , Dosificación Radioterapéutica , Radioterapia de Alta Energía
6.
Opt Lett ; 45(4): 1021-1024, 2020 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-32058533

RESUMEN

Omni-directional, ultra-small-angle x-ray scattering imaging provides a method to measure the orientation of micro-structures without having to resolve them. In this letter, we use single-photon localization with the Timepix3 chip to demonstrate, to the best of our knowledge, the first laboratory-based implementation of single-shot, omni-directional x-ray scattering imaging using the beam-tracking technique. The setup allows a fast and accurate retrieval of the scattering signal using a simple absorption mask. We suggest that our new approach may enable faster laboratory-based tensor tomography and could be used for energy-resolved x-ray scattering imaging.

7.
J Synchrotron Radiat ; 25(Pt 6): 1650-1657, 2018 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-30407174

RESUMEN

Timepix3 (256 × 256 pixels with a pitch of 55 µm) is a hybrid-pixel-detector readout chip that implements a data-driven architecture and is capable of simultaneous time-of-arrival (ToA) and energy (ToT: time-over-threshold) measurements. The ToA information allows the unambiguous identification of pixel clusters belonging to the same X-ray interaction, which allows for full one-by-one detection of photons. The weighted mean of the pixel clusters can be used to measure the subpixel position of an X-ray interaction. An experiment was performed at the European Synchrotron Radiation Facility in Grenoble, France, using a 5 µm × 5 µm pencil beam to scan a CdTe-ADVAPIX-Timepix3 pixel (55 µm × 55 µm) at 8 × 8 matrix positions with a step size of 5 µm. The head-on scan was carried out at four monochromatic energies: 24, 35, 70 and 120 keV. The subpixel position of every single photon in the beam was constructed using the weighted average of the charge spread of single interactions. Then the subpixel position of the total beam was found by calculating the mean position of all photons. This was carried out for all points in the 8 × 8 matrix of beam positions within a single pixel. The optimum conditions for the subpixel measurements are presented with regards to the cluster sizes and beam subpixel position, and the improvement of this technique is evaluated (using the charge sharing of each individual photon to achieve subpixel resolution) versus alternative techniques which compare the intensity ratio between pixels. The best result is achieved at 120 keV, where a beam step of 4.4 µm ± 0.86 µm was measured.

8.
Phys Med ; 42: 116-126, 2017 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-29173904

RESUMEN

Radiotherapy with protons and carbon ions enables to deliver dose distributions of high conformation to the target. Treatment with helium ions has been suggested due to their physical and biological advantages. A reliable benchmarking of the employed physics models with experimental data is required for treatment planning. However, experimental data for helium interactions is limited, in part due to the complexity and large size of conventional experimental setups. We present a novel method for the investigation of helium interactions with matter using miniaturized instrumentation based on highly integrated pixel detectors. The versatile setup consisted of a monitoring detector in front of the PMMA phantom of varying thickness and a detector stack for investigation of outgoing particles. The ion type downstream from the phantom was determined by high-resolution pattern recognition analysis of the single particle signals in the pixelated detectors. The fractions of helium and hydrogen ions behind the used targets were determined. As expected for the stable helium nucleus, only a minor decrease of the primary ion fluence along the target depth was found. E.g. the detected fraction of hydrogen ions on axis of a 220MeV/u 4He beam was below 6% behind 24.5cm of PMMA. Monte-Carlo simulations using Geant4 reproduce the experimental data on helium attenuation and yield of helium fragments qualitatively, but significant deviations were found for some combinations of target thickness and beam energy. The presented method is promising to contribute to the reduction of the uncertainty of treatment planning for helium ion radiotherapy.


Asunto(s)
Radioterapia de Iones Pesados/instrumentación , Radioterapia de Iones Pesados/métodos , Helio/uso terapéutico , Iones/uso terapéutico , Miniaturización , Simulación por Computador , Diseño de Equipo , Hidrógeno , Miniaturización/instrumentación , Método de Montecarlo , Fantasmas de Imagen , Polimetil Metacrilato , Radiometría/instrumentación , Planificación de la Radioterapia Asistida por Computador/instrumentación , Planificación de la Radioterapia Asistida por Computador/métodos
9.
Phys Med Biol ; 62(12): 4884-4896, 2017 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-28368853

RESUMEN

Carbon ion beam radiotherapy enables a very localised dose deposition. However, even small changes in the patient geometry or positioning errors can significantly distort the dose distribution. A live, non-invasive monitoring system of the beam delivery within the patient is therefore highly desirable, and could improve patient treatment. We present a novel three-dimensional method for imaging the beam in the irradiated object, exploiting the measured tracks of single secondary ions emerging under irradiation. The secondary particle tracks are detected with a TimePix stack-a set of parallel pixelated semiconductor detectors. We developed a three-dimensional reconstruction algorithm based on maximum likelihood expectation maximization. We demonstrate the applicability of the new method in the irradiation of a cylindrical PMMA phantom of human head size with a carbon ion pencil beam of [Formula: see text] MeV u-1. The beam image in the phantom is reconstructed from a set of nine discrete detector positions between [Formula: see text] and [Formula: see text] from the beam axis. Furthermore, we demonstrate the potential to visualize inhomogeneities by irradiating a PMMA phantom with an air gap as well as bone and adipose tissue surrogate inserts. We successfully reconstructed a three-dimensional image of the treatment beam in the phantom from single secondary ion tracks. The beam image corresponds well to the beam direction and energy. In addition, cylindrical inhomogeneities with a diameter of [Formula: see text] cm and density differences down to [Formula: see text] g cm-3 to the surrounding material are clearly visualized. This novel three-dimensional method to image a therapeutic carbon ion beam in the irradiated object does not interfere with the treatment and requires knowledge only of single secondary ion tracks. Even with detectors with only a small angular coverage, the three-dimensional reconstruction of the fragmentation points presented in this work was found to be feasible.


Asunto(s)
Radioterapia de Iones Pesados , Imagenología Tridimensional/instrumentación , Fantasmas de Imagen , Algoritmos , Humanos , Funciones de Verosimilitud , Dosificación Radioterapéutica
10.
Int J Part Ther ; 3(4): 439-449, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-31772994

RESUMEN

PURPOSE: In carbon ion beam radiation therapy, fragmentation processes within the patient lead to changes in the composition of the particle field with increasing depth. Consequences are alterations of the resulting dose distribution and its biological effectiveness. To enable accurate treatment planning, the characteristics of the ion spectra resulting from fragmentation processes need to be known for various ion energies and target materials. In this work, we present a novel method for ion type identification using a small and highly flexible setup based on a single detector and designed to simplify measurements and overcome current shortages in available fragmentation data. MATERIALS AND METHODS: The presented approach is based on the pixelated, semiconductor detector Timepix. The large number of pixels with small pitch, all individually calibrated for energy deposition, enables detection and visualization of single particle tracks. For discrimination among different ion species, the pattern recognition analysis of the detector signal is used. Fragmentation spectra resulting from a primary carbon ion beam at various depths of tissue-equivalent material were studied to identify different ion species in mixed particle fields. The performance of the method was evaluated quantitatively using reference data from an established technique. RESULTS: All ion species resulting from carbon ion fragmentation in tissue-equivalent material could be separated. For measurements behind a 158-mm-thick water tank, the relative fractions of H, He, Be, and B ions detected agreed with corresponding reference data within the limits of uncertainty. For the relatively rare lithium ions, the agreement was within 2.3 Δref (uncertainty of reference). CONCLUSION: For designated configurations, the presented ion type identification method enables studies of therapeutic carbon ion beams with a simple, small, and configurable detection setup. The technique is promising to enable online fragmentation studies over a wide range of beam and target parameters in the future.

11.
Radiat Prot Dosimetry ; 164(4): 484-8, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-25979739

RESUMEN

Aircrew members and passengers are exposed to increased rates of cosmic radiation on-board commercial jet aircraft. The annual effective doses of crew members often exceed limits for public, thus it is recommended to monitor them. In general, the doses are estimated via various computer codes and in some countries also verified by measurements. This paper describes a comparison of three cosmic rays detectors, namely of the (a) HAWK Tissue Equivalent Proportional Counter; (b) Liulin semiconductor energy deposit spectrometer and (c) TIMEPIX silicon semiconductor pixel detector, exposed to radiation fields on-board commercial Czech Airlines company jet aircraft. Measurements were performed during passenger flights from Prague to Madrid, Oslo, Tbilisi, Yekaterinburg and Almaty, and back in July and August 2011. For all flights, energy deposit spectra and absorbed doses are presented. Measured absorbed dose and dose equivalent are compared with the EPCARD code calculations. Finally, the advantages and disadvantages of all detectors are discussed.


Asunto(s)
Aeronaves/instrumentación , Radiación Cósmica , Exposición Profesional/análisis , Monitoreo de Radiación/instrumentación , Absorción de Radiación , Diseño de Equipo , Humanos , Exposición Profesional/normas , Exposición a la Radiación , Semiconductores , Actividad Solar
12.
Rev Sci Instrum ; 81(11): 113702, 2010 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-21133473

RESUMEN

A method for x-ray phase contrast imaging is introduced in which only one absorption grating and a microfocus x-ray source in a tabletop setup are used. The method is based on precise subpixel position determination of the x-ray pattern projected by the grating directly from the pattern image. For retrieval of the phase gradient and absorption image (both images obtained from one exposure), it is necessary to measure only one projection of the investigated object. Thus, our method is greatly simplified compared with the phase-stepping method and our method can significantly reduce the time-consuming scanning and possibly the unnecessary dose. Furthermore, the technique works with a fully polychromatic spectrum and gives ample variability in object magnification. Consequently, the approach can open the way to further widespread application of phase contrast imaging, e.g., into clinical practice. The experimental results on a simple testing object as well as on complex biological samples are presented.


Asunto(s)
Radiografía/instrumentación , Semiconductores , Absorción , Animales , Riñón/diagnóstico por imagen , Ratones , Polimetil Metacrilato/química , Dosis de Radiación
13.
J Microsc ; 226(Pt 3): 191-4, 2007 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-17535258

RESUMEN

A method has been developed for routine laboratory visualisation of small-scale soft tissue by means of transmission X-ray radioscopy and tomography. Using termites as models, imaging quality with a spatial resolution of about 3 mum was achieved and 3D tomographic reconstruction was demonstrated. A termite worker individual was visualized before and after its metamorphosis towards the soldier caste. The developed methodology represents a non-invasive and real-time way of acquiring 3D anatomic data with a high contrast so that it is a promising candidate to become a tool for routine investigations in life sciences.


Asunto(s)
Isópteros/anatomía & histología , Fotones , Tomografía por Rayos X/métodos , Animales , Especificidad de la Especie
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...