Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 115
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Int J Mol Sci ; 25(15)2024 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-39125665

RESUMEN

Elevated levels of homocysteine (Hcy) and related metabolites are associated with Alzheimer's disease (AD). Severe hyperhomocysteinemia causes neurological deficits and worsens behavioral and biochemical traits associated with AD. Although Hcy is precluded from entering the Genetic Code by proofreading mechanisms of aminoacyl-tRNA synthetases, and thus is a non-protein amino acid, it can be attached to proteins via an N-homocysteinylation reaction mediated by Hcy-thiolactone. Because N-homocysteinylation is detrimental to a protein's function and biological integrity, Hcy-thiolactone-detoxifying enzymes-PON1, BLMH, BPHL-have evolved. This narrative review provides an account of the biological function of these enzymes and of the consequences of their impairments, leading to the phenotype characteristic of AD. Overall, accumulating evidence discussed in this review supports a hypothesis that Hcy-thiolactone contributes to neurodegeneration associated with a dysregulated Hcy metabolism.


Asunto(s)
Enfermedad de Alzheimer , Homocisteína , Humanos , Enfermedad de Alzheimer/metabolismo , Homocisteína/metabolismo , Homocisteína/análogos & derivados , Animales , Hiperhomocisteinemia/metabolismo
2.
Sci Rep ; 14(1): 11222, 2024 05 16.
Artículo en Inglés | MEDLINE | ID: mdl-38755170

RESUMEN

Homocysteine (Hcy) and Hcy-thiolactone (HTL) affect fibrin clot properties and are linked to cardiovascular disease. Factors that influence fibrin clot properties and stroke are not fully understood. To study sulfur-containing amino acid metabolites, fibrin clot lysis time (CLT) and maximum absorbance (Absmax) in relation to stroke, we analyzed plasma and urine from 191 stroke patients (45.0% women, age 68 ± 12 years) and 291 healthy individuals (59.7% women, age 50 ± 17 years). Plasma and urinary levels of sulfur-containing amino acid metabolites and fibrin clot properties were significantly different in stroke patients compared to healthy individuals. Fibrin CLT correlated with fibrin Absmax in healthy males (R2 = 0.439, P = 0.000), females (R2 = 0.245, P = 0.000), female stroke patients (R2 = 0.187, P = 0.000), but not in male stroke patients (R2 = 0.008, P = ns). Fibrin CLT correlated with age in healthy females but not males while fibrin Absmax correlated with age in both sexes; these correlations were absent in stroke patients. In multiple regression analysis in stroke patients, plasma (p)CysGly, pMet, and MTHFR A1298C polymorphism were associated with fibrin Absmax, while urinary (u)HTL, uCysGly, and pCysGly were significantly associated with fibrin CLT. In healthy individuals, uHTL and uGSH were significantly associated with fibrin Absmax, while pGSH, and CBS T833C 844ins68 polymorphism were associated with fibrin CLT. In logistic regression, uHTL, uHcy, pCysGly, pGSH, MTHFR C677T polymorphism, and Absmax were independently associated with stroke. Our findings suggest that HTL and other sulfur-containing amino acid metabolites influence fibrin clot properties and the risk of stroke.


Asunto(s)
Fibrina , Homocisteína , Accidente Cerebrovascular Isquémico , Humanos , Masculino , Femenino , Homocisteína/sangre , Homocisteína/análogos & derivados , Homocisteína/metabolismo , Homocisteína/orina , Anciano , Persona de Mediana Edad , Fibrina/metabolismo , Accidente Cerebrovascular Isquémico/sangre , Accidente Cerebrovascular Isquémico/metabolismo , Accidente Cerebrovascular Isquémico/orina , Adulto , Tiempo de Lisis del Coágulo de Fibrina , Factores de Riesgo , Aminoácidos Sulfúricos/sangre , Aminoácidos Sulfúricos/metabolismo , Aminoácidos Sulfúricos/orina , Aminoácidos/orina , Aminoácidos/sangre , Aminoácidos/metabolismo , Metilenotetrahidrofolato Reductasa (NADPH2)/genética , Metilenotetrahidrofolato Reductasa (NADPH2)/metabolismo , Estudios de Casos y Controles , Anciano de 80 o más Años , Accidente Cerebrovascular/metabolismo , Accidente Cerebrovascular/sangre , Accidente Cerebrovascular/orina
3.
Life (Basel) ; 14(5)2024 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-38792655

RESUMEN

Objectives-Metallic elements and fibrin clot properties have been linked to stroke. We examined metallic and nonmetallic elements, fibrin clot lysis time (CLT), and maximum absorbance (Absmax) in relation to ischemic stroke. Design-A case-control study of ischemic stroke patients vs. healthy individuals. Subjects and Methods-Plasma and serum were collected from 260 ischemic stroke patients (45.0% women; age, 68 ± 12 years) and 291 healthy controls (59.7% women; age, 50 ± 17 years). Fibrin CLT and Absmax were measured using a validated turbidimetric assay. Serum elements were quantified by inductively coupled plasma mass spectrometry (ICP-MS) and optical emission spectrometry (ICP-OES). Data were analyzed by bivariate correlations and multiple or logistic regression. Results-In female stroke patients, copper, lithium, and aluminum were significantly lower compared with controls; in male stroke patients, potassium was lower, and beryllium was elevated. In female and male stroke patients, iron, zinc, nickel, calcium, magnesium, sodium, and silicon were significantly lower, while strontium was elevated. Positive correlations between fibrin clot properties and metals, observed in healthy controls, were lost in ischemic stroke patients. In multivariate regression analysis, fibrin CLT and/or Absmax was associated with zinc, calcium, potassium, beryllium, and silicon in stroke patients and with sodium, potassium, beryllium, and aluminum in controls. In logistic regression analysis, stroke was independently associated with lithium, nickel, beryllium, strontium, boron, and silicon and with sodium, potassium, calcium, and aluminum but not with fibrin CLT/Absmax. Conclusions-Various elements were associated with fibrin clot properties and the risk of ischemic stroke. Lithium, sodium, calcium, and aluminum abrogated the association of fibrin clot properties with ischemic stroke.

4.
Front Cell Dev Biol ; 12: 1322844, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38559811

RESUMEN

Hyperhomocysteinemia (HHcy), characterized by elevated homocysteine (Hcy) levels, is a known risk factor for cardiovascular, renal, and neurological diseases, as well as pregnancy complications. Our study aimed to investigate whether HHcy induced by a high-methionine (high-Met) diet exacerbates cognitive and behavioral deficits in offspring and leads to other breeding problems. Dietary HHcy was induced four weeks before mating and continued throughout gestation and post-delivery. A battery of behavioral tests was conducted on offspring between postnatal days (PNDs) 5 and 30 to assess motor function/activity and cognition. The results were correlated with brain morphometric measurements and quantitative analysis of mammalian target of rapamycin (mTOR)/autophagy markers. The high-Met diet significantly increased parental and offspring urinary tHcy levels and influenced offspring behavior in a sex-dependent manner. Female offspring exhibited impaired cognition, potentially related to morphometric changes observed exclusively in HHcy females. Male HHcy pups demonstrated muscle weakness, evidenced by slower surface righting, reduced hind limb suspension (HLS) hanging time, weaker grip strength, and decreased activity in the beaker test. Western blot analyses indicated the downregulation of autophagy and the upregulation of mTOR activity in HHcy cortexes. HHcy also led to breeding impairments, including reduced breeding rate, in-utero fetal death, lower pups' body weight, and increased mortality, likely attributed to placental dysfunction associated with HHcy. In conclusion, a high-Met diet impairs memory and cognition in female juveniles and weakens muscle strength in male pups. These effects may stem from abnormal placental function affecting early neurogenesis, the dysregulation of autophagy-related pathways in the cortex, or epigenetic mechanisms of gene regulation triggered by HHcy during embryonic development.

5.
Sci Rep ; 14(1): 7151, 2024 03 26.
Artículo en Inglés | MEDLINE | ID: mdl-38531978

RESUMEN

Nutritional and genetic deficiencies in homocysteine (Hcy) metabolism lead to hyperhomocysteinemia (HHcy) and cause endothelial dysfunction, a hallmark of atherosclerosis, which is a major cause of cardiovascular disease (CVD). Impaired autophagy causes the accumulation of damaged proteins and organelles and is associated with CVD. Biochemically, HHcy is characterized by elevated levels of Hcy and its metabolites, Hcy-thiolactone and N-Hcy-protein. However, whether these metabolites can dysregulate mTOR signaling and autophagy in endothelial cells is not known. Here, we examined the influence of Hcy-thiolactone, N-Hcy-protein, and Hcy on autophagy human umbilical vein endothelial cells. We found that treatments with Hcy-thiolactone, N-Hcy-protein, or Hcy significantly downregulated beclin 1 (BECN1), autophagy-related 5 (ATG5), autophagy-related 7 (ATG7), and microtubule-associated protein 1 light chain 3 (LC3) mRNA and protein levels. We also found that these changes were mediated by upregulation by Hcy-thiolactone, N-Hcy-protein, and Hcy of autophagy-targeting microRNA (miR): miR-21, miR-155, miR-216, and miR-320c. The effects of these metabolites on levels of miR targeting autophagy as well as on the levels of BECN1, ATG5, ATG7, and LC3 mRNA and protein were abrogated by treatments with inhibitors of miR-21, miR-155, miR-216, and mir320c. Taken together, our findings show that Hcy metabolites can upregulate miR-21, miR-155, miR-216, and mir320c, which then downregulate autophagy in human endothelial cells, important for vascular homeostasis.


Asunto(s)
Enfermedades Cardiovasculares , Homocisteína/análogos & derivados , MicroARNs , Humanos , MicroARNs/genética , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Homocisteína/metabolismo , Enfermedades Cardiovasculares/metabolismo , Beclina-1/metabolismo , Autofagia , ARN Mensajero/metabolismo
6.
J Alzheimers Dis ; 95(4): 1735-1755, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37718819

RESUMEN

BACKGROUND: Bleomycin hydrolase (BLMH), a homocysteine (Hcy)-thiolactone detoxifying enzyme, is attenuated in Alzheimer's disease (AD) brains. Blmh loss causes astrogliosis in mice while the loss of histone demethylase Phf8, which controls mTOR signaling, causes neuropathy in mice and humans. OBJECTIVE: To examine how Blmh gene deletion affects the Phf8/H4K20me1/mTOR/autophagy pathway, amyloid-ß (Aß) accumulation, and cognitive/neuromotor performance in mice. METHODS: We generated a new mouse model of AD, the Blmh-/-5xFAD mouse. Behavioral assessments were conducted by cognitive/neuromotor testing. Blmh and Phf8 genes were silenced in mouse neuroblastoma N2a-APPswe cells by RNA interference. mTOR- and autophagy-related proteins, and AßPP were quantified by western blotting and the corresponding mRNAs by RT-qPCR. Aß was quantified by western blotting (brains) and by confocal microscopy (cells). RESULTS: Behavioral testing showed cognitive/neuromotor deficits in Blmh-/- and Blmh-/-5xFAD mice. Phf8 was transcriptionally downregulated in Blmh-/- and Blmh-/-5xFAD brains. H4K20me1, mTOR, phospho-mTOR, and AßPP were upregulated while autophagy markers Becn1, Atg5, and Atg7 were downregulated in Blmh-/- and Blmh-/-5xFAD brains. Aß was elevated in Blmh-/-5xFAD brains. These biochemical changes were recapitulated in Blmh-silenced N2a-APPswe cells, which also showed increased H4K20me1-mTOR promoter binding and impaired autophagy flux (Lc3-I, Lc3-II, p62). Phf8-silencing or treatments with Hcy-thiolactone or N-Hcy-protein, metabolites elevated in Blmh-/- mice, induced biochemical changes in N2a-APPswe cells like those induced by the Blmh-silencing. However, Phf8-silencing elevated Aß without affecting AßPP. CONCLUSIONS: Our findings show that Blmh interacts with AßPP and the Phf8/H4K20me1/mTOR/autophagy pathway, and that disruption of those interactions causes Aß accumulation and cognitive/neuromotor deficits.


Asunto(s)
Enfermedad de Alzheimer , Humanos , Ratones , Animales , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/metabolismo , Ratones Transgénicos , Ácido Aspártico Endopeptidasas/metabolismo , Péptidos beta-Amiloides/metabolismo , Serina-Treonina Quinasas TOR , Modelos Animales de Enfermedad , Precursor de Proteína beta-Amiloide/genética
7.
J Inherit Metab Dis ; 46(6): 1114-1130, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37477632

RESUMEN

The loss of cystathionine ß-synthase (CBS), an important homocysteine (Hcy)-metabolizing enzyme or the loss of PHF8, an important histone demethylase participating in epigenetic regulation, causes severe intellectual disability in humans. Similar neuropathies were also observed in Cbs-/- and Phf8-/- mice. How CBS or PHF8 depletion can cause neuropathy was unknown. To answer this question, we examined a possible interaction between PHF8 and CBS using Cbs-/- mouse and neuroblastoma cell models. We quantified gene expression by RT-qPCR and western blotting, mTOR-bound H4K20me1 by chromatin immunoprecipitation (CHIP) assay, and amyloid ß (Aß) by confocal fluorescence microscopy using anti-Aß antibody. We found significantly reduced expression of Phf8, increased H4K20me1, increased mTOR expression and phosphorylation, and increased App, both on protein and mRNA levels in brains of Cbs-/- mice versus Cbs+/- sibling controls. Autophagy-related Becn1, Atg5, and Atg7 were downregulated while p62, Nfl, and Gfap were upregulated on protein and mRNA levels, suggesting reduced autophagy and increased neurodegeneration in Cbs-/- brains. In mouse neuroblastoma N2a or N2a-APPswe cells, treatments with Hcy-thiolactone, N-Hcy-protein or Hcy, or Cbs gene silencing by RNA interference significantly reduced Phf8 expression and increased total H4K20me1 as well as mTOR promoter-bound H4K20me1. This led to transcriptional mTOR upregulation, autophagy downregulation, and significantly increased APP and Aß levels. The Phf8 gene silencing increased Aß, but not APP, levels. Taken together, our findings identify Phf8 as a regulator of Aß synthesis and suggest that neuropathy of Cbs deficiency is mediated by Hcy metabolites, which transcriptionally dysregulate the Phf8 → H4K20me1 → mTOR → autophagy pathway thereby increasing Aß accumulation.


Asunto(s)
Cistationina betasintasa , Neuroblastoma , Animales , Ratones , Péptidos beta-Amiloides/genética , Péptidos beta-Amiloides/metabolismo , Autofagia/genética , Cistationina betasintasa/genética , Cistationina betasintasa/metabolismo , Epigénesis Genética , Histona Demetilasas/genética , Histona Demetilasas/metabolismo , Neuroblastoma/genética , ARN Mensajero , Serina-Treonina Quinasas TOR , Factores de Transcripción/genética
8.
Int J Mol Sci ; 24(9)2023 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-37175471

RESUMEN

High-density lipoprotein (HDL) exhibits cardio- and neuro-protective properties, which are thought to be promoted by paraoxonase 1 (PON1), a hydrolytic enzyme associated with an HDL subfraction also enriched with an anticoagulant protein (PROS1) and amyloid beta-transport protein clusterin (CLU, APOJ). Reduced levels of PON1 activity, characterized biochemically by elevated levels of homocysteine (Hcy)-thiolactone, oxidized lipids, and proteins modified by these metabolites in humans and mice, are associated with pathological abnormalities affecting the cardiovascular system (atherothrombosis) and the central nervous system (cognitive impairment, Alzheimer's disease). The molecular bases of these abnormalities have been largely unknown. Proteomic and metabolic studies over the past decade have significantly contributed to our understanding of PON1 function and the mechanisms by which PON1 deficiency can lead to disease. Recent studies discussed in this review highlight the involvement of dysregulated proteostasis in the pro-oxidative, pro-atherothrombotic, and pro-amyloidogenic phenotypes associated with low PON1 activity.


Asunto(s)
Enfermedad de Alzheimer , Arildialquilfosfatasa , Humanos , Ratones , Animales , Arildialquilfosfatasa/metabolismo , Péptidos beta-Amiloides , Proteómica , Lipoproteínas HDL/metabolismo , Enfermedad de Alzheimer/metabolismo
9.
Cells ; 12(5)2023 02 26.
Artículo en Inglés | MEDLINE | ID: mdl-36899882

RESUMEN

Paraoxonase 1 (PON1), a homocysteine (Hcy)-thiolactone detoxifying enzyme, has been associated with Alzheimer's disease (AD), suggesting that PON1 plays an important protective role in the brain. To study the involvement of PON1 in the development of AD and to elucidate the mechanism involved, we generated a new mouse model of AD, the Pon1-/-xFAD mouse, and examined how Pon1 depletion affects mTOR signaling, autophagy, and amyloid beta (Aß) accumulation. To elucidate the mechanism involved, we examined these processes in N2a-APPswe cells. We found that Pon1 depletion significantly downregulated Phf8 and upregulated H4K20me1; mTOR, phospho-mTOR, and App were upregulated while autophagy markers Bcln1, Atg5, and Atg7 were downregulated at the protein and mRNA levels in the brains of Pon1─/─5xFAD vs. Pon1+/+5xFAD mice. Pon1 depletion in N2a-APPswe cells by RNA interference led to downregulation of Phf8 and upregulation of mTOR due to increased H4K20me1-mTOR promoter binding. This led to autophagy downregulation and significantly increased APP and Aß levels. Phf8 depletion by RNA interference or treatments with Hcy-thiolactone or N-Hcy-protein metabolites similarly increased Aß levels in N2a-APPswe cells. Taken together, our findings define a neuroprotective mechanism by which Pon1 prevents Aß generation.


Asunto(s)
Enfermedad de Alzheimer , Péptidos beta-Amiloides , Animales , Ratones , Enfermedad de Alzheimer/metabolismo , Péptidos beta-Amiloides/metabolismo , Arildialquilfosfatasa/genética , Autofagia , Serina-Treonina Quinasas TOR
10.
PLoS One ; 17(10): e0275956, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36301961

RESUMEN

Fibrin clot structure/function contributes to cardiovascular disease. We examined sulfur-containing metabolites as determinants of fibrin clot lysis time (CLT) and maximum absorbance (Absmax) in relation to outcomes in coronary artery disease (CAD) patients. Effects of B-vitamin/folate therapy on CLT and Absmax were studied. Plasma samples were collected from 1,952 CAD patients randomized in a 2 x 2 factorial design to (i) folic acid, vitamins B12, B6; (ii) folic acid, vitamin B12; (iii) vitamin B6; (iv) placebo for 3.8 years in the Western Norway B-Vitamin Intervention Trial. Clot lysis time (CLT) and maximum absorbance (Absmax) were determined using a validated turbidimetric assay. Acute myocardial infarction (AMI) and mortality were assessed during a 7-year follow-up. Data were analyzed using bivariate and multiple regression. Survival free of events was studied using Kaplan Mayer plots. Hazard ratios (HR) and 95% confidence intervals (CI) were estimated using Cox proportional hazards models. Baseline urinary homocysteine (uHcy)-thiolactone and plasma cysteine (Cys) were significantly associated with CLT while plasma total Hcy was significantly associated with Absmax, independently of fibrinogen, triglycerides, vitamin E, glomerular filtration rate, body mass index, age, sex plasma creatinine, CRP, HDL-C, ApoA1, and previous diseases. B-vitamins/folate did not affect CLT and Absmax. Kaplan-Meier analysis showed associations of increased baseline CLT and Absmax with worse outcomes. In Cox regression analysis, baseline CLT and Absmax (>cutoff) predicted AMI (CLT: HR 1.58, 95% CI 1.10-2.28; P = 0.013. Absmax: HR 3.22, CI 1.19-8.69; P = 0.021) and mortality (CLT: HR 2.54, 95% CI 1.40-4.63; P = 0.002. Absmax: 2.39, 95% CI 1.17-4.92; P = 0.017). After adjustments for other prognostic biomarkers these associations remained significant. Cys and uHcy-thiolactone, but not tHcy, were significant predictors of AMI in Cox regression models that included CLT. Conclusions uHcy-thiolactone and plasma Cys are novel determinants of CLT, an important predictor of adverse CAD outcomes. CLT and Absmax were not affected by B-vitamin/folate therapy, which could account for the lack of efficacy of such therapy in CAD. Trial registration: URL: http://clinicaltrials.gov. Identifier: NCT00354081.


Asunto(s)
Enfermedad de la Arteria Coronaria , Infarto del Miocardio , Trombosis , Complejo Vitamínico B , Humanos , Fibrina/metabolismo , Pronóstico , Vitamina B 12 , Ácido Fólico , Homocisteína , Infarto del Miocardio/tratamiento farmacológico , Trombosis/tratamiento farmacológico , Factores de Riesgo
11.
FASEB J ; 36(10): e22547, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-36098436

RESUMEN

Reproductive success in mice depends on sexually dimorphic major urinary proteins (Mup) that facilitate interactions between females and males. Deletion of cystathionine ß-synthase (Cbs) gene, a metabolic gene important for homeostasis of one-carbon metabolism, impairs reproduction by causing female infertility in mice. Here, we examined Mup biogenesis and sexual signaling in Cbs-/- versus Cbs+/- mice. We found significantly reduced levels of total urinary Mup protein in male and female Cbs-/- versus Cbs+/- mice. SDS-PAGE/Western blot, ESI-MS, and RT-qPCR analyses of the liver, plasma, and urinary proteins identified a male-specific Mup20 in Cbs-/- , but not in Cbs+/- females. The 18 893 Da Mup20 became the most abundant in urine of Cbs-/- females and males. Effects of Cbs genotype on 18 645 Da, 18 693 Da, and 18 709 Da Mup species abundance were Mup- and sex-specific. Cbs genotype-dependent changes in hepatic Mups and Mup20 expression were similar at the protein and mRNA level. Changes in Mups, but not in Mup20, can be explained by downregulation of hepatic Zhx2 and Ghr receptors in Cbs-/- mice. Behavioral testing showed that Cbs+/- females ignored Cbs-/- male urine but were attracted to Cbs+/- male urine. Cbs+/- males ignored urine of Cbs-/- males but countermarked urine of other Cbs+/- males and were attracted to urines of Cbs-/- as well as Cbs+/- females. Cbs-/- males did not countermark urine of Cbs+/- males but were attracted to urines of Cbs+/- females. Taken together, these findings show that Cbs, a metabolic gene, interacts with the processes involved in Mup biogenesis that are essential for the maintenance of sexual dimorphism and signaling and suggest that dysregulation of these interactions impairs reproductive fitness in mice.


Asunto(s)
Enzimas Reparadoras del ADN/metabolismo , Proteínas de Unión a Poli-ADP-Ribosa/metabolismo , Biosíntesis de Proteínas , Animales , Cistationina betasintasa/genética , Cistationina betasintasa/metabolismo , Enzimas Reparadoras del ADN/genética , Femenino , Silenciador del Gen , Masculino , Ratones , Proteínas de Unión a Poli-ADP-Ribosa/genética , Proteínas/metabolismo
12.
Nutrients ; 14(10)2022 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-35631155

RESUMEN

Rich in polyphenols, cranberry juice (CJ) with high antioxidant activity is believed to contribute to various health benefits. However, our knowledge of the neuroprotective potential of cranberries is limited. Previously, we have demonstrated that CJ treatment controls oxidative stress in several organs, with the most evident effect in the brain. In this study, we examined the capability of CJ for protection against Parkinson's disease (PD) in a rotenone (ROT) rat model. Wistar rats were administered with CJ in a dose of 500 mg/kg b.w./day (i.g.) and subcutaneously injected with ROT (1.3 mg/kg b.w./day). The experiment lasted 45 days, including 10 days pre-treatment with CJ and 35 days combined treatment with CJ and ROT. We quantified the expression of α-synuclein and apoptosis markers in the midbrain, performed microscopic examination, and assessed postural instability to evaluate the CJ neuroprotective effect. Our results indicate that the juice treatment provided neuroprotection, as evidenced by declined α-synuclein accumulation, Bax and cleaved/active caspase-9 expression, and normalized cytochrome c level that was accompanied by the enhancement of neuronal activity survival and improved postural instability. Importantly, we also found that long-term administration of CJ alone in a relatively high dose may exert a deleterious effect on cell survival in the midbrain.


Asunto(s)
Jugos de Frutas y Vegetales , Fármacos Neuroprotectores , Enfermedad de Parkinson , Vaccinium macrocarpon , Animales , Modelos Animales de Enfermedad , Fármacos Neuroprotectores/uso terapéutico , Enfermedad de Parkinson/tratamiento farmacológico , Enfermedad de Parkinson/prevención & control , Ratas , Ratas Wistar , Rotenona , alfa-Sinucleína/metabolismo
13.
Int J Mol Sci ; 23(8)2022 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-35456998

RESUMEN

Dysregulation of one-carbon metabolism affects a wide range of biological processes and is associated with a number of diseases, including cardiovascular disease, dementia, neural tube defects, and cancer. Accumulating evidence suggests that one-carbon metabolism plays an important role in COVID-19. The symptoms of long COVID-19 are similar to those presented by subjects suffering from vitamin B12 deficiency (pernicious anemia). The metabolism of a cell infected by the SARS-CoV-2 virus is reshaped to fulfill the need for massive viral RNA synthesis, which requires de novo purine biosynthesis involving folate and one-carbon metabolism. Many aspects of host sulfur amino acid metabolism, particularly glutathione metabolism underlying antioxidant defenses, are also taken over by the SARS-CoV-2 virus. The purpose of this review is to summarize recent findings related to one-carbon metabolism and sulfur metabolites in COVID-19 and discuss how they inform strategies to combat the disease.


Asunto(s)
COVID-19 , COVID-19/complicaciones , Carbono/metabolismo , Ácido Fólico/metabolismo , Homocisteína , Humanos , Metionina/metabolismo , SARS-CoV-2 , Vitamina B 12/metabolismo , Síndrome Post Agudo de COVID-19
15.
J Alzheimers Dis ; 81(3): 1211-1229, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33935094

RESUMEN

BACKGROUND: Identification of modifiable risk factors that affect cognitive decline is important for the development of preventive and treatment strategies. Status of paraoxonase 1 (PON1), a high-density lipoprotein-associated enzyme, may play a role in the development of neurological diseases, including Alzheimer's disease. OBJECTIVE: We tested a hypothesis that PON1 status predicts cognition in individuals with mild cognitive impairment (MCI). METHODS: Individuals with MCI (n = 196, 76.8-years-old, 60% women) participating in a randomized, double-blind placebo-controlled trial (VITACOG) were assigned to receive a daily dose of folic acid (0.8 mg), vitamin B12 (0.5 mg) and B6 (20 mg) (n = 95) or placebo (n = 101) for 2 years. Cognition was analyzed by neuropsychological tests. Brain atrophy was quantified in a subset of participants (n = 168) by MRI. PON1 status, including PON1 Q192R genotype, was determined by quantifying enzymatic activity of PON1 using paraoxon and phenyl acetate as substrates. RESULTS: In the placebo group, baseline phenylacetate hydrolase (PhAcase) activity of PON1 (but not paraoxonase activity or PON1 Q192R genotype) was significantly associated with global cognition (Mini-Mental State Examination, MMSE; Telephone Inventory for Cognitive Status-modified, TICS-m), verbal episodic memory (Hopkins Verbal Learning Test-revised: Total Recall, HVLT-TR; Delayed Recall, HVLT-DR), and attention/processing speed (Trail Making A and Symbol Digits Modalities Test, SDMT) at the end of study. In addition to PhAcase, baseline iron and triglycerides predicted MMSE, baseline fatty acids predicted SDMT, baseline anti-N-Hcy-protein autoantibodies predicted TICS-m, SDMT, Trail Making A, while BDNF V66M genotype predicted HVLT-TR and HVLT-DR scores at the end of study. B-vitamins abrogated associations of PON1 and other variables with cognition. CONCLUSION: PON1 is a new factor associated with impaired cognition that can be ameliorated by B-vitamins in individuals with MCI.


Asunto(s)
Arildialquilfosfatasa/sangre , Cognición/efectos de los fármacos , Disfunción Cognitiva/sangre , Complejo Vitamínico B/uso terapéutico , Encéfalo/diagnóstico por imagen , Disfunción Cognitiva/diagnóstico por imagen , Disfunción Cognitiva/tratamiento farmacológico , Suplementos Dietéticos , Método Doble Ciego , Femenino , Ácido Fólico/farmacología , Ácido Fólico/uso terapéutico , Humanos , Imagen por Resonancia Magnética , Masculino , Espectrometría de Masas , Pruebas Neuropsicológicas , Vitamina B 12/farmacología , Vitamina B 12/uso terapéutico , Vitamina B 6/farmacología , Vitamina B 6/uso terapéutico , Complejo Vitamínico B/farmacología
16.
Free Radic Biol Med ; 169: 169-180, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33838286

RESUMEN

High-density lipoprotein (HDL), in addition to promoting reverse cholesterol transport, possesses anti-oxidative, anti-inflammatory, and antithrombotic activities, which are thought to be promoted by paraoxonase 1 (PON1), an HDL-associated enzyme. Reduced levels of PON1 are associated with increased oxidative stress and cardiovascular disease both in humans and Pon1-/- mice. However, molecular basis of these associations are not fully understood. We used label-free mass spectrometry and Ingenuity Pathway Analysis bioinformatics resources to examine plasma proteomes in four-month-old Pon1-/- mice (n = 32) and their Pon1+/+ siblings (n = 15) fed with a hyper-homocysteinemic (HHcy) diet. We found that inactivation of the Pon1 gene resulted in dysregulation of proteins involved in the maintenance of redox homeostasis in mice. Redox-responsive proteins affected by Pon1-/- genotype were more numerous in mice fed with HHcy diet (18 out of 89, 20%) than in mice fed with a control diet (4 out of 50, 8%). Most of the redox-related proteins affected by Pon1-/- genotype in mice fed with a control diet (3 out of 4, 75%) were also affected in HHcy mice, while the majority of Pon1-/- genotype-dependent redox proteins in HHcy mice (15 out of 18, 83%) were not affected by Pon1-/- genotype in control diet animals. In addition to redox-related proteins, we identified proteins involved in acute phase response, complement/blood coagulation, lipoprotein/lipid metabolism, immune response, purine metabolism, glucose metabolism, and other proteins that were dysregulated by Pon1-/- genotype in HHcy mice. Taken together, our findings suggest that Pon1 interacts with proteins involved in antioxidant defenses and other processes linked to cardiovascular disease. Dysregulation of these processes provides an explanation for the pro-oxidant and pro-atherogenic phenotypes observed in Pon1-/- mice and humans with attenuated PON1 levels.


Asunto(s)
Arildialquilfosfatasa , Hiperhomocisteinemia , Animales , Arildialquilfosfatasa/genética , Arildialquilfosfatasa/metabolismo , Dieta , Hiperhomocisteinemia/genética , Ratones , Oxidación-Reducción , Proteoma
17.
J Proteome Res ; 20(5): 2458-2476, 2021 05 07.
Artículo en Inglés | MEDLINE | ID: mdl-33797904

RESUMEN

Protein N-homocysteinylation by a homocysteine (Hcy) metabolite, Hcy-thiolactone, is an emerging post-translational modification (PTM) that occurs in all tested organisms and has been linked to human diseases. The yeast Saccharomyces cerevisiae is widely used as a model eukaryotic organism in biomedical research, including studies of protein PTMs. However, patterns of global protein N-homocysteinylation in yeast are not known. Here, we identified 68 in vivo and 197 in vitro N-homocysteinylation sites at protein lysine residues (N-Hcy-Lys). Some of the N-homocysteinylation sites overlap with other previously identified PTM sites. Protein N-homocysteinylation in vivo, induced by supplementation of yeast cultures with Hcy, which elevates Hcy-thiolactone levels, was accompanied by significant changes in the levels of 70 yeast proteins (38 up-regulated and 32 down-regulated) involved in the ribosomal structure, amino acid biosynthesis, and basic cellular pathways. Our study provides the first global survey of N-homocysteinylation and accompanying changes in the yeast proteome caused by elevated Hcy level. These findings suggest that protein N-homocysteinylation and dysregulation of cellular proteostasis may contribute to the toxicity of Hcy in yeast. Homologous proteins and N-homocysteinylation sites are likely to be involved in Hcy-related pathophysiology in humans and experimental animals. Data are available via ProteomeXchange with identifier PXD020821.


Asunto(s)
Lisina , Saccharomyces cerevisiae , Animales , Homocisteína , Humanos , Lisina/metabolismo , Procesamiento Proteico-Postraduccional , Proteoma , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo
18.
Alzheimers Dement (N Y) ; 7(1): e12159, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33816764

RESUMEN

INTRODUCTION: Elevated homocysteine (Hcy) and related metabolites accelerate Alzheimer's disease. Hcy-lowering B vitamins slow brain atrophy/cognitive decline in mild cognitive impairment (MCI). Modification with Hcy-thiolactone generates auto-immunogenic N-Hcy-protein. We tested a hypothesis that anti-N-Hcy-protein autoantibodies predict cognition in individuals with MCI participating in a randomized, double-blind, placebo-controlled VITACOG trial of B vitamins. METHODS: Participants with MCI (n = 196, 76.8 years old, 60% women) were randomly assigned to receive a daily dose of folic acid (0.8 mg), vitamin B12 (0.5 mg), and B6 (20 mg) (n = 98) or placebo (n = 98) for 2 years. Cognition was analyzed by neuropsychological tests. Brain atrophy was quantified in a subset of patients (n = 167) by magnetic resonance imaging. Anti N-Hcy-protein auto-antibodies were quantified by enzyme-linked immunosorbent assay. Associations among anti-N-Hcy-protein autoantibodies, cognition, and brain atrophy were examined by multiple regression analysis. RESULTS: At baseline, anti-N-Hcy-protein autoantibodies were significantly associated with impaired global cognition (Mini-Mental State Examination [MMSE]), episodic memory (Hopkins Verbal Learning Test-revised), and attention/processing speed (Map Search). At the end of the study, anti-N-Hcy-protein autoantibodies were associated with impaired global cognition (MMSE) and attention/processing speed (Trail Making A). In the placebo group, baseline anti-N-Hcy-protein autoantibodies predicted, independently of Hcy, global cognition (Telephone Inventory for Cognitive Status modified [TICS-m]; MMSE) and attention/processing speed (Trail Making A) but not brain atrophy, at the end of study. B-vitamin treatment abrogated association of anti-N-Hcy-protein autoantibodies with cognition. DISCUSSION: These findings suggest that anti-N-Hcy-protein autoantibodies can impair functional (attention/processing speed and global cognition), but not structural (brain atrophy), aspects of cognition. Anti-N-Hcy-protein autoantibodies are a new factor associated with impaired cognition, which could be ameliorated by B vitamins.

19.
Antioxidants (Basel) ; 9(12)2020 Nov 28.
Artículo en Inglés | MEDLINE | ID: mdl-33260536

RESUMEN

High-density lipoprotein (HDL), in addition to promoting reverse cholesterol transport, possesses anti-inflammatory, antioxidative, and antithrombotic activities. Paraoxonase 1 (PON1), carried on HDL in the blood, can contribute to these antiatherogenic activities. The PON1-Q192R polymorphism involves a change from glutamine (Q variant) to arginine (R variant) at position 192 of the PON1 protein and affects its enzymatic activity. The molecular basis of PON1 association with cardiovascular and neurological diseases is not fully understood. To get insight into the function of PON1 in human disease, we examined how genetic attenuation of PON1 levels/activity affect plasma proteomes of mice and humans. Healthy participants (48.9 years old, 50% women) were randomly recruited from the Poznan population. Four-month-old Pon1-/- (n = 17) and Pon1+/+ (n = 8) mice (50% female) were used in these experiments. Plasma proteomes were analyzed using label-free mass spectrometry. Bioinformatics analysis was carried out using the Ingenuity Pathway Analysis (IPA) resources. PON1-Q192R polymorphism and Pon1-/- genotype induced similar changes in plasma proteomes of humans and mice, respectively. The top molecular network, identified by IPA, affected by these changes involved proteins participating in lipoprotein metabolism. Other PON1 genotype-dependent proteomic changes affect different biological networks in humans and mice: "cardiovascular, neurological disease, organismal injury/abnormalities" in PON1-192QQ humans and "humoral immune response, inflammatory response, protein synthesis" and "cell-to-cell signaling/interaction, hematological system development/function, immune cell trafficking" in Pon1-/- mice. Our findings suggest that PON1 interacts with molecular pathways involved in lipoprotein metabolism, acute/inflammatory response, and complement/blood coagulation that are essential for blood homeostasis. Modulation of those interactions by the PON1 genotype can account for its association with cardiovascular and neurological diseases.

20.
Expert Rev Proteomics ; 17(10): 751-765, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-33320032

RESUMEN

Introduction: Homocystinuria due to cystathionine ß-synthase (CBS) deficiency, the most frequent inborn error of sulfur amino acid metabolism, is characterized biochemically by severely elevated homocysteine (Hcy) and related metabolites, such as Hcy-thiolactone and N-Hcy-protein. CBS deficiency reduces life span and causes pathological abnormalities affecting most organ systems in the human body, including the cardiovascular (thrombosis, stroke), skeletal/connective tissue (osteoporosis, thin/non-elastic skin, thin hair), and central nervous systems (mental retardation, seizures), as well as the liver (fatty changes), and the eye (ectopia lentis, myopia). Molecular basis of these abnormalities were largely unknown and available treatments remain ineffective. Areas covered: Proteomic and transcriptomic studies over the past decade or so, have significantly contributed to our understanding of mechanisms by which the CBS enzyme deficiency leads to clinical manifestations associated with it. Expert opinion: Recent findings, discussed in this review, highlight the involvement of dysregulated proteostasis in pathologies associated with CBS deficiency, including thromboembolism, stroke, neurologic impairment, connective tissue/collagen abnormalities, hair defects, and hepatic toxicity. To ameliorate these pathologies, pharmacological, enzyme replacement, and gene transfer therapies are being developed.


Asunto(s)
Cistationina betasintasa/deficiencia , Cistationina betasintasa/metabolismo , Hígado Graso/enzimología , Hígado Graso/metabolismo , Animales , Autofagia/fisiología , Fibrinógeno/metabolismo , Humanos , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Proteómica/métodos , Transcriptoma/genética , Transcriptoma/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...