Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
2.
J Phys Condens Matter ; 34(12)2022 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-34929681

RESUMEN

The integration of dissimilar 2D materials is important for nanoelectronic and thermoelectric applications. Among different polymorphs and different bond geometries, borophene and graphdiyne (GDY) are two promising candidates for these applications. In the present paper, we have studied hetero-bilayers comprising graphdiyne-borophene (GDY-BS) sheets. Three structural models, namely S0, S1and S2have been used for borophene sheets. The optimum interlayer distance for the hetero-bilayers was obtained through binding energy calculations. Then, the structure and electronic properties of the monolayers and hetero-bilayers were individually examined and compared. GDY monolayer was shown to be a semiconductor with a band gap of 0.43 eV, while the borophene monolayers, as well as all studied hetero-bilayers showed metallic behavior. The thermoelectric properties of borophene and GDY monolayers and the GDY-BS bilayers were calculated on the basis of the semi-classical Boltzmann theory. The results showed signs of improvement in the conductivity behavior of the hetero-bilayers. Furthermore, considering the increase in Seebeck coefficient and the conductivity for all the structures after calculating figure of merit and power factor, a higher power factor and more energy generation were observed for bilayers. These results show that the GDY-BS hetero-bilayers can positively affect the performance of thermoelectric devices.

3.
Phys Chem Chem Phys ; 20(19): 13607-13615, 2018 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-29736515

RESUMEN

Non-equilibrium molecular dynamics simulations of water-salt solutions driven through single and double-layer graphyne membranes by a pressure difference created by rigid pistons are carried out to determine the relative performance of the membranes as filters in a reverse osmosis desalination process. It is found that the flow rate of water through a graphyne-4 membrane is twice that of a graphyne-3 membrane for both single and double-layer membranes. Although the addition of a second layer to a single-layer membrane reduces the membrane permeability, the double-layer graphyne membranes are still two or three orders of magnitude more permeable than commercial reverse osmosis membranes. The minimum reduction in flow rate for double-layer membranes occurs at a layer spacing of 0.35 nm with an AA stacking configuration, while at a spacing of 0.6 nm the flow rate is close to zero due to a high free energy barrier for permeation. This is caused by the difference in the environments on either side of the membrane sheets and the formation of a compact two-dimensional layer of water molecules in the interlayer space which slows down water permeation. The distribution of residence times of water molecules in the interlayer region suggests that at the critical layer spacing of 0.6 nm, a cross-over occurs in the mechanism of water flow from the collective movement of hydrogen-bonded water sheets to the permeation of individual water molecules. All membranes are demonstrated to have a high salt rejection fraction and the double-layered graphyne-4 membranes can further increase the salt rejection by trapping ions that have passed through the first membrane from the feed solution in the interlayer space.

4.
Biophys Chem ; 239: 7-15, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-29753257

RESUMEN

Molecular dynamics (MD) simulations of a dipalmitoylphosphatidylcholine (DPPC) bilayer and its neutral inverse-phosphocholine equivalent (DPCPe) were performed to find salt-induced effects on their surface structure and the nature of ion-lipid interactions. We found that the area per lipid is not considerably affected by the inversion, but the deuterium order parameter of carbon atoms in the region of carbonyl carbons changes dramatically. MD simulations indicate that Ca2+ ions can bind to the surface of both DPPC and DPCPe membranes, but K+ ions do not bind to them. In the case of Na+, however, the ions can bind to natural lipids but not to the inverse ones. Also, our results demonstrate that the hydration level of CPe bilayers is substantially lower than PC bilayers and the averaged orientation of water dipoles in the region of CPe headgroups is effectively inverted compared to PC lipids. This might be important in the interaction of the bilayer with its biological environment. Furthermore, it was found for the CPe bilayers that the enhanced peaks of the electrostatic potential profiles shift further away from the bilayer center relative to those of PC bilayers. This behavior makes the penetration of cations into the bilayer more difficult and possibly explains the experimentally observed enhanced release rates of anionic compounds in the CPe membrane.


Asunto(s)
1,2-Dipalmitoilfosfatidilcolina/química , Membrana Dobles de Lípidos/química , Simulación de Dinámica Molecular , Sales (Química)/química , Sales (Química)/farmacología
5.
Biophys Chem ; 226: 1-13, 2017 07.
Artículo en Inglés | MEDLINE | ID: mdl-28410497

RESUMEN

To provide insight into the molecular mechanisms of local anesthetic action, we have carried out an extensive investigation of two amide type local anesthetics, lidocaine and articaine in both charged and uncharged forms, interacting with DMPC lipid membrane. We have applied both standard molecular dynamics simulations and metadynamics simulations to provide a detailed description of the free energy landscape of anesthetics embedded in the lipid bilayer. The global minimum of the free energy surface (equilibrium position of anesthetics in the lipid membrane) occurred around 1nm of the bilayer center. The uncharged anesthetics show more affinity to bind to this region compared to the charged drugs. The binding free energy of uncharged lidocaine in the membrane (-30.3kJ/mol) is higher than uncharged articaine (-24.0kJ/mol), which is in good agreement with higher lipid solubility of lidocaine relative to the articaine. The octanol/water partition coefficient of uncharged drugs was also investigated using expanded ensemble simulations. In addition, complementary standard MD simulations were carried out to study the partitioning behavior of multiple anesthetics inside the lipid bilayer. The results obtained here are in line with previously reported simulations and suggest that the different forms of anesthetics induce different structural modifications in the lipid bilayer, which can provide new insights into their complex membrane translocation phenomena.


Asunto(s)
Anestésicos/química , Dimiristoilfosfatidilcolina/química , Membrana Dobles de Lípidos , Modelos Químicos , Lidocaína/química , Simulación de Dinámica Molecular
6.
Eur Biophys J ; 46(3): 265-282, 2017 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-27557558

RESUMEN

Despite available experimental results, the molecular mechanism of action of local anesthetics upon the nervous system and contribution of the cell membrane to the process are still controversial. In this work, molecular dynamics simulations were performed to investigate the effect of two clinically used local anesthetics, procaine and tetracaine, on the structure and dynamics of a fully hydrated dimyristoylphosphatidylcholine lipid bilayer. We focused on comparing the main effects of uncharged and charged drugs on various properties of the lipid membrane: mass density distribution, diffusion coefficient, order parameter, radial distribution function, hydrogen bonding, electrostatic potential, headgroup angle, and water dipole orientation. To compare the diffusive nature of anesthetic through the lipid membrane quantitatively, we investigated the hexadecane/water partition coefficient using expanded ensemble simulation. We predicted the permeability coefficient of anesthetics in the following order: uncharged tetracaine > uncharged procaine > charged tetracaine > charged procaine. We also shown that the charged forms of drugs are more potent in hydrogen bonding, disturbing the lipid headgroups, changing the orientation of water dipoles, and increasing the headgroup electrostatic potential more than uncharged drugs, while the uncharged drugs make the lipid diffusion faster and increase the tail order parameter. The results of these simulation studies suggest that the different forms of anesthetics induce different structural modifications in the lipid bilayer, which provides new insights into their molecular mechanism.


Asunto(s)
Anestésicos Locales/metabolismo , Anestésicos Locales/farmacología , Membrana Dobles de Lípidos/metabolismo , Procaína/metabolismo , Procaína/farmacología , Tetracaína/metabolismo , Tetracaína/farmacología , Anestésicos Locales/química , Membrana Celular/química , Membrana Celular/efectos de los fármacos , Membrana Celular/metabolismo , Difusión , Dimiristoilfosfatidilcolina/metabolismo , Membrana Dobles de Lípidos/química , Conformación Molecular , Simulación de Dinámica Molecular , Procaína/química , Tetracaína/química , Termodinámica
7.
J Biomol Struct Dyn ; 34(2): 327-40, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-25811078

RESUMEN

Liposomal formulation of curcumin is an important therapeutic agent for the treatment of various cancers. Despite extensive studies on the biological effects of this formulation in cancer treatment, much remains unknown about curcumin-liposome interactions. Understanding how different lipid bilayers respond to curcumin molecule may help us to design more effective liposomal curcumin. Here, we used molecular dynamics simulation method to investigate the behavior of curcumin in two lipid bilayers commonly used in preparation of liposomal curcumin, namely dipalmitoylphosphatidylcholine (DPPC) and dimyristoylphosphatidylglycerol (DMPG). First, the free energy barriers for translocation of one curcumin molecule from water to the lipid bilayer were determined by using the potential of mean force (PMF). The computed free energy profile exhibits a global minimum at the solvent-headgroup interface (LH region) for both lipid membranes. We also evaluated the free energy difference between the equilibrium position of curcumin in the lipid bilayer and bulk water as the excess chemical potential. Our results show that curcumin has the higher affinity in DMPG compared to DPPC lipid bilayer (-8.39 vs. -1.69 kBT) and this is related to more hydrogen bond possibility for curcumin in DMPG lipid membrane. Next, using an unconstrained molecular dynamic simulation with curcumin initially positioned at the center of lipid bilayer, we studied various properties of each lipid bilayer system in the presence of curcumin molecule that was in full agreement with PMF and experimental data. The results of these simulation studies suggest that membrane composition could have a large effect on interaction of curcumin-lipid bilayer.


Asunto(s)
Curcumina/farmacología , Membrana Dobles de Lípidos/química , Liposomas/química , Simulación de Dinámica Molecular , 1,2-Dipalmitoilfosfatidilcolina/química , Curcumina/química , Electrones , Enlace de Hidrógeno , Fosfatidilgliceroles/química , Termodinámica , Agua/química
8.
J Mol Model ; 21(2): 20, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25620421

RESUMEN

Interaction of the alkali metals (AMs) like lithium (Li), sodium (Na), and potassium (K) with defective and non-defective (8,0) C3N nanotubes (C3NNT) have been investigated using the first-principles study. In addition to structural properties, we have also studied the electronic properties, charge transfer, and work function of the AM-C3NNT complexes. AMs are adsorbed on hollow sites, regardless of the initial positions. Upon the adsorption of AMs, the structures exhibit semiconducting behavior. Furthermore, interaction of Li atom can be explained by Dewar model, whereas for the other atoms there are different explanations. For all metal adsorbates, the direction of the charge transfer is from adsorbate to adsorbent, because of their high surface reactivity. The results showed that the nanotube with carbon vacancy is the most favorite adsorbent. Our findings also indicated that the enhancement in absolute adsorption energy is in order of Li > K > Na. It is noteworthy that clustering of AM atoms on the nanotubes with and without defects is not expected. It is worthy that C3NNT is a better adsorbent for AM atoms than CNT, graphene, C60, and B80.

9.
Eur Biophys J ; 44(1-2): 37-47, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25427619

RESUMEN

The amylin peptide in a dioleoylphosphatidylcholine (DOPC) bilayer is studied using united atom molecular dynamics (MD) simulations. Dynamics and transport properties of the peptide and the phospholipid bilayer are investigated. The lateral diffusion of DOPC is in the order of 10(-8) cm(2) s(-1), which is in agreement with the experimental results. The order parameter and density profile for phospholipid molecules in the bilayer are calculated. The secondary structure of amylin peptide shows that the amino acids in two terminals are structureless and two α-helical segments in the peptide are connected through an unstructured link. This structure is similar to the experimental structure in the membrane-mimicking media. Free energy calculations of the Ile26 â†’ Pro mutation in the amylin peptide are performed in the bilayer and in aqueous solution using molecular dynamics simulations and a thermodynamic cycle. It is shown that in the mutated peptide in aqueous solution, the α-helix structure changes to a 5-helix, whereas this configuration is preserved in the bilayer environment. It is interesting that the accessible surface area increases for hydrophobic residues in the bilayer and for hydrophilic residues in aqueous solution as the coupling parameter changes from 0 to 1. These results are significant to understanding the aggregation mechanism of human amylin monomers in membranes to the dimers, trimers, oligomers, and fibrils associated with the type 2 diabetes at the atomic level.


Asunto(s)
Polipéptido Amiloide de los Islotes Pancreáticos/química , Membrana Dobles de Lípidos/química , Simulación de Dinámica Molecular , Mutación Missense , Secuencia de Aminoácidos , Humanos , Polipéptido Amiloide de los Islotes Pancreáticos/genética , Datos de Secuencia Molecular
10.
J Biomol Struct Dyn ; 33(2): 404-17, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-24559040

RESUMEN

Catalytic mechanism of orotidine 5'-monophosphate decarboxylase (OMPDC), one of the nature most proficient enzymes which provides large rate enhancement, has not been fully understood yet. A series of 30 ns molecular dynamics (MD) simulations were run on X-ray structure of the OMPDC from Saccharomyces cerevisiae in its free form as well as in complex with different ligands, namely 1-(5'-phospho-D-ribofuranosyl) barbituric acid (BMP), orotidine 5'-monophosphate (OMP), and 6-phosphonouridine 5'-monophosphate (PMP). The importance of this biological system is justified both by its high rate enhancement and its potential use as a target in chemotherapy. This work focuses on comparing two physicochemical states of the enzyme (protonated and deprotonated Asp91) and three ligands (substrate OMP, inhibitor, and transition state analog BMP and substrate analog PMP). Detailed analysis of the active site geometry and its interactions is properly put in context by extensive comparison with relevant experimental works. Our overall results show that in terms of hydrogen bond occupancy, electrostatic interactions, dihedral angles, active site configuration, and movement of loops, notable differences among different complexes are observed. Comparison of the results obtained from these simulations provides some detailed structural data for the complexes, the enzyme, and the ligands, as well as useful insights into the inhibition mechanism of the OMPDC enzyme. Furthermore, these simulations are applied to clarify the ambiguous mechanism of the OMPDC enzyme, and imply that the substrate destabilization and transition state stabilization contribute to the mechanism of action of the most proficient enzyme, OMPDC.


Asunto(s)
Barbitúricos/química , Organofosfonatos/química , Orotidina-5'-Fosfato Descarboxilasa/química , Proteínas de Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/enzimología , Uridina Monofosfato/análogos & derivados , Dominio Catalítico , Enlace de Hidrógeno , Simulación de Dinámica Molecular , Unión Proteica , Estructura Secundaria de Proteína , Uridina Monofosfato/química , Agua/química
11.
J Biomol Struct Dyn ; 33(6): 1254-68, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25068451

RESUMEN

Liposomal cytarabine, DepoCyt, is a chemotherapy agent which is used in cancer treatment. This form of cytarabine has more efficacy and fewer side effects relative to the other forms. Since DepoCyt contains the cytarabine encapsulated within phosphatidylcholine and the sterol molecules, we modeled dioleoylphosphatidylcholine (DOPC)/cholesterol bilayer membrane as a carrier for cytarabine to study drug-bilayer interactions. For this purpose, we performed a series of united-atom molecular dynamics (MD) simulations for 25 ns to investigate the interactions between cytarabine and cholesterol-containing DOPC lipid bilayers. Only the uncharged form of cytarabine molecule was investigated. In this study, different levels of the cholesterol content (0, 20, and 40%) were used. MD simulations allowed us to determine dynamical and structural properties of the bilayer membrane and to estimate the preferred location and orientation of the cytarabine molecule inside the bilayer membrane. Properties such as membrane thickness, area per lipid, diffusion coefficient, mass density, bilayer packing, order parameters, and intermolecular interactions were examined. The results show that by increasing the cholesterol concentration in the lipid bilayers, the bilayer thickness increases and area per lipid decreases. Moreover, in accordance with the experiments, our calculations show that cholesterol molecules have ordering effect on the hydrocarbon acyl chains. Furthermore, the cytarabine molecule preferentially occupies the polar region of the lipid head groups to form specific interactions (hydrogen bonds). Our results fully support the experimental data. Our finding about drug-bilayer interaction is crucial for the liposomal drug design.


Asunto(s)
Colesterol/química , Citarabina/química , Membrana Dobles de Lípidos/química , Simulación de Dinámica Molecular , Enlace de Hidrógeno , Modelos Moleculares , Modelos Teóricos , Conformación Molecular , Fosfatidilcolinas/química
12.
Eur Biophys J ; 42(6): 427-40, 2013 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-23385423

RESUMEN

Proline-rich homeodomain (PRH) is a regulatory protein controlling transcription and gene expression processes by binding to the specific sequence of DNA, especially to the sequence 5'-TAATNN-3'. The impact of base pair mutations on the binding between the PRH protein and DNA is investigated using molecular dynamics and free energy simulations to identify DNA sequences that form stable complexes with PRH. Three 20-ns molecular dynamics simulations (PRH-TAATTG, PRH-TAATTA and PRH-TAATGG complexes) in explicit solvent water were performed to investigate three complexes structurally. Structural analysis shows that the native TAATTG sequence forms a complex that is more stable than complexes with base pair mutations. It is also observed that upon mutation, the number and occupancy of the direct and water-mediated hydrogen bonds decrease. Free energy calculations performed with the thermodynamic integration method predict relative binding free energies of 0.64 and 2 kcal/mol for GC to AT and TA to GC mutations, respectively, suggesting that among the three DNA sequences, the PRH-TAATTG complex is more stable than the two mutated complexes. In addition, it is demonstrated that the stability of the PRH-TAATTA complex is greater than that of the PRH-TAATGG complex.


Asunto(s)
ADN/química , Mutación , Prolina/química , Análisis Mutacional de ADN , Proteínas de Unión al ADN/genética , Enlace de Hidrógeno , Modelos Moleculares , Simulación de Dinámica Molecular , Dominios y Motivos de Interacción de Proteínas , Estructura Secundaria de Proteína , Factores de Tiempo
13.
Eur Biophys J ; 41(3): 329-40, 2012 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-22311606

RESUMEN

The proline-rich homeodomain (PRH)-DNA complex consists of a protein with 60 residues and a 13-base-pair DNA. The PRH protein is a transcription factor that plays a key role in the regulation of gene expression. PRH is a significant member of the Q50 class of homeodomain proteins. The homeodomain section of PRH is essential for binding to DNA and mediates sequence-specific DNA binding. Three 20-ns molecular dynamics (MD) simulations (free protein, free DNA and protein-DNA complex) in explicit solvent water were performed to elucidate the intermolecular contacts in the PRH-DNA complex and the role of dynamics of water molecules forming water-mediated contacts. The simulation provides a detailed explanation of the trajectory of hydration water molecules. The simulations show that some water molecules in the protein-DNA interface exchange with bulk waters. The simulation identifies that most of the contacts consisted of direct interactions between the protein and DNA including specific and non-specific contacts, but several water-mediated polar contacts were also observed. The specific interaction between Gln50 and C18 and water-mediated hydrogen bond between Gln50 and T7 were found to be present during almost the entire time of the simulation. These results show good consistency with experimental and previous computational studies. Structural properties such as root-mean-square deviations (RMSD), root-mean-square fluctuations (RMSF) and secondary structure were also analyzed as a function of time. Analyses of the trajectories showed that the dynamic fluctuations of both the protein and the DNA were lowered by the complex formation.


Asunto(s)
Proteínas de Unión al ADN/química , Proteínas de Unión al ADN/metabolismo , ADN/metabolismo , Simulación de Dinámica Molecular , Dominios Proteicos Ricos en Prolina , Secuencia de Aminoácidos , ADN/química , Enlace de Hidrógeno , Datos de Secuencia Molecular , Conformación de Ácido Nucleico , Unión Proteica , Agua/química
14.
Biophys Chem ; 153(2-3): 179-86, 2011 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-21183271

RESUMEN

The interaction of the Alzheimer's amyloid beta peptide, Aß40, with sodium dodecyl sulfate (SDS) micelles, together with the self-assembly of SDS molecules around the peptide from an initial random distribution were studied using atomistic and coarse-grained (CG) molecular dynamics simulations. In atomistic simulations, the peptide structure in the micelle was characterized by two helical regions connected through a short hinge. The initial structure of the system was shown to affect the simulation results. The atomistic self-assembly of SDS molecules resulted in a 38-molecule micelle around the peptide, along with some globules and individual molecules. Coarse-grained simulation results, however, did not show such a difference, and at the end of all CG simulations, a complete 60-molecule micelle was obtained, with the peptide located at the interface of the micelle with water. The obtained CG radial density profiles and SDS micelle size and shape properties were identical for all CG simulations.


Asunto(s)
Péptidos beta-Amiloides/química , Micelas , Modelos Moleculares , Simulación de Dinámica Molecular , Dodecil Sulfato de Sodio/química , Enfermedad de Alzheimer , Humanos , Agua/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...