Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
World J Microbiol Biotechnol ; 40(6): 185, 2024 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-38683236

RESUMEN

Stalk rot disease is a major constraint in maize production and till date reported to be caused by two to three species of phytopathogenic fungi but, in our present study, we disclose the first report of stalk rot is caused by complex species of phytopathogens, which belongs to five different genera. Therefore, to substantiate these findings, a total of 105 diseased samples of maize were collected from 21 different locations in six different geographical locations of India from which 48 isolates were used for the research study. Morphological features such as pigmentation, colony color, type of mycelium and pattern of mycelium was examined using macro and microscopic methods. A total of 11 different spp. of pathogens belonging to the five different genera: Fusarium verticillioides (56.25%), F. equiseti (14.5%), F. andiyazi (6.25%), F. solani (2.08%), F. proliferatum (2.08%), F. incarnatum (2.08%), Lasidioplodia theobrame (6.25%), Exserohilum rostrtum (4.16%), Nigrospora spp. (4.16%). and Schizophyllum commune (2.08%) were identified by different housekeeping genes (ITS, TEF-1α, RPB2 and Actin). Fusarium verticillioides, F. equiseti and F. andiyazi were major pathogens involved in stalk rot. This is the first report on F. proliferatum, F. solani, F. incarnatum, Lasidioplodia theobrame, Exserohilum rostrtum, Nigrospora spp. and Schizophyllum commune causing stalk rot of maize and their distribution in the different states of India. Studies on population dynamics of PFSR will enhance the understanding of pathogen behavior, virulence, or its association with different pathogens across India, which will facilitate the development of resistant maize genotypes against the PFSR.


Asunto(s)
Fusarium , Filogenia , Enfermedades de las Plantas , Zea mays , Zea mays/microbiología , Enfermedades de las Plantas/microbiología , India , Fusarium/genética , Fusarium/clasificación , Fusarium/aislamiento & purificación , Fusarium/patogenicidad , ADN de Hongos/genética , Hongos/genética , Hongos/clasificación , Hongos/aislamiento & purificación , Hongos/patogenicidad , Variación Genética
2.
Sci Rep ; 14(1): 8610, 2024 04 14.
Artículo en Inglés | MEDLINE | ID: mdl-38616195

RESUMEN

There are fewer studies on Trichoderma diversity in agricultural fields. The rhizosphere of 16 crops was analyzed for Trichoderma species in 7 districts of Rajasthan state of India. Based on DNA sequence of translation elongation factor 1α (tef-1α), and morphological characteristics, 60 isolates were identified as 11 species: Trichoderma brevicompactum, species in Harzianum clade identified as T. afroharzianum, T. inhamatum, T. lentiforme, T. camerunense, T. asperellum, T. asperelloides, T. erinaceum, T. atroviride, T. ghanense, and T. longibrachiatum. T. brevicompactum is the most commonly occurring strain followed by T. afroharzianum. No new species were described in this study. T. lentiforme, showed its first occurrence outside the South American continent. The morphological and cultural characteristics of the major species were observed, described, and illustrated in detail. The isolates were tested for their antagonistic effect against three soilborne plant pathogens fungi: Sclerotium rolfsii, Rhizoctonia solani, and Fusarium verticillioides in plate culture assays. One of the most potent strains was T. afroharzianum BThr29 having a maximum in vitro inhibition of S. rolfsii (76.6%), R. solani (84.8%), and F. verticillioides (85.7%). The potential strain T. afroharzianum BThr29 was also found to be efficient antagonists against soil borne pathogens in in vivo experiment. Such information on crop selectivity, antagonistic properties, and geographic distribution of Trichoderma species will be beneficial for developing efficient Trichoderma-based biocontrol agents.


Asunto(s)
Rizosfera , Trichoderma , India , Trichoderma/genética , Productos Agrícolas , Variación Genética
3.
Front Microbiol ; 14: 1121781, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37065162

RESUMEN

Post flowering stalk rot (PFSR) of maize caused by the Fusarium species complex is a serious threat to maize production worldwide. The identification of Fusarium species causing PFSR based on morphology traditionally relies on a small set of phenomic characteristics with only minor morphological variations among distinct Fusarium species. Seventy-one isolates were collected from 40 sites in five agro-climatic zones of India to assess the diversity of Fusarium spp. associated with maize crops showing symptoms of PFSR in the field. To investigate the pathogenicity of Fusarium spp. causing PFSR sixty isolates were toothpick inoculated between the first and second node at 55 days after sowing during the tassel formation stage of the crop in Kharif (Rainy season), and Rabi (Winter season) season field trials. Ten most virulent Fusarium isolates, based on the highest observed disease index, were identified by homology and phylogenetic analyses of partial sequences of the translation elongation factor 1 α (Tef-1α). Based on morphological traits such as mycelial growth patterns and mycelial pigmentation, Fusarium isolates were divided into nine clusters. The isolates were judged to be virulent based on their ability to decrease seedling vigour in in-vivo situations and high disease severity in field experiments. Pathogenicity test during the Kharif season showed 12 isolates with virulent disease symptoms with a mean severity ranging between 50 to 67 percent disease index (PDI) whereas in Rabi season, only five isolates were considered virulent, and the mean severity ranged between 52 to 67 PDI. Based on pathological characterization and molecular identification, 10 strains of Fusarium species namely, Fusarium acutatum (2/10), Fusarium verticillioides (Syn. Gibberella fujikuroi var. moniliformis) (7/10), Fusarium andiyazi (2/10) recorded the highest diseases index. All these species are part of the Fusarium fujikuroi species complex (FFSC). The distribution of virulent isolates is specific to a geographical location with a hot humid climate. Increased knowledge regarding the variability of Fusarium spp. responsible for PFSR of maize occurring across wide geographical locations of India will enable more informed decisions to be made to support the management of the disease, including screening for resistance in maize-inbred lines.

4.
J Agric Food Chem ; 64(15): 3101-10, 2016 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-27019116

RESUMEN

Rhizoctonia solani AG 4 is a soilborne necrotrophic fungal plant pathogen that causes economically important diseases on agronomic crops worldwide. This study used a proteomics approach to characterize both intracellular proteins and the secretome of R. solani AG 4 isolate Rs23A under several growth conditions, the secretome being highly important in pathogenesis. From over 500 total secretome and soluble intracellular protein spots from 2-D gels, 457 protein spots were analyzed and 318 proteins positively matched with fungal proteins of known function by comparison with available R. solani genome databases specific for anastomosis groups 1-IA, 1-IB, and 3. These proteins were categorized to possible cellular locations and functional groups and for some proteins their putative roles in plant cell wall degradation and virulence. The majority of the secreted proteins were grouped to extracellular regions and contain hydrolase activity.


Asunto(s)
Células Vegetales/metabolismo , Plantas/genética , Proteómica , Rhizoctonia/química , Virulencia/fisiología , Proteínas Fúngicas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA