Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
J Biomech ; 157: 111710, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37437459

RESUMEN

Trunk muscle size and location relative to the spine are key factors affecting their capacity to assist in trunk movement, strength, and function. There remains limited information on how age, weight and height affect these measurements across multiple spinal levels, and prior studies had limited samples in terms of size and ethnicity. In this study, we measured trunk muscles in coronal plane slices at T4 - L4 of CT scans acquired in 507 participants, aged 40-90 years, from the community-based Framingham Heart Study. Mixed-effects linear regressions, stratified by sex, determined the contributions of age, height and weight, to muscle cross-sectional area (CSA), the distance from the vertebral body centroid (CD), and the in-plane angle of the line between the vertebral body and the muscle centroids (CA). Muscle CSA decreased with higher age by an average of -0.8% per year, but weight (average 0.8% per kg) and height (average -0.05% per cm) had mixed results, with both positive and negative effects depending on muscle group and level. Muscle CD increased with weight by an average of 0.3% per kg, but had mixed effects for age (average 0.8% per year) and height (average 0.1% per cm). Muscle CA had mixed associations with age (average 0.05% per year), weight (average 0.01% per kg) and height (average -0.05% per cm). A prediction program created with these results provides a simple approach for estimating probable values for trunk muscle size and position in the absence of medical imaging.


Asunto(s)
Músculo Esquelético , Columna Vertebral , Masculino , Persona de Mediana Edad , Humanos , Femenino , Anciano , Músculo Esquelético/fisiología , Columna Vertebral/diagnóstico por imagen , Columna Vertebral/fisiología , Torso , Tomografía Computarizada por Rayos X , Modelos Lineales
2.
J Chem Phys ; 135(3): 034703, 2011 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-21787019

RESUMEN

Experimental studies have reported that glycine is adsorbed on the Cu(110) and Cu(100) surfaces in its deprotonated form at room temperature, but in its zwitterionic form on Pd(111) and Pt(111). In contrast, recent density functional theory (DFT) calculations indicated that the deprotonated molecules are thermodynamically favored on Cu(110), Cu(100), and Pd(111). To explore the source of this disagreement, we have tested three possible hypotheses. Using DFT calculations, we first show that the kinetic barrier for the deprotonation reaction of glycine on Pd(111) is larger than on Cu(110) or Cu(100). We then report that the presence of excess hydrogen would have little influence on the experimentally observed results, especially for Pd(111). Lastly, we perform Monte Carlo simulations to demonstrate that the aggregates of zwitterionic species on Pt(111) are energetically preferred to those of neutral species. Our results strongly suggest that the formation of aggregates with relatively large numbers of adsorbed molecules is favored under experimentally relevant conditions and that the adsorbate-adsorbate interactions in these aggregates stabilize the zwitterionic species.


Asunto(s)
Cobre/química , Glicina/química , Paladio/química , Platino (Metal)/química , Adsorción , Teoría Cuántica , Propiedades de Superficie , Temperatura
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...