Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
bioRxiv ; 2024 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-38585876

RESUMEN

GenoTools, a Python package, streamlines population genetics research by integrating ancestry estimation, quality control (QC), and genome-wide association studies (GWAS) capabilities into efficient pipelines. By tracking samples, variants, and quality-specific measures throughout fully customizable pipelines, users can easily manage genetics data for large and small studies. GenoTools' "Ancestry" module renders highly accurate predictions, allowing for high-quality ancestry-specific studies, and enables custom ancestry model training and serialization, specified to the user's genotyping or sequencing platform. As the genotype processing engine that powers several large initiatives including the NIH's Center for Alzheimer's and Related Dementias (CARD) and the Global Parkinson's Genetics Program (GP2). GenoTools was used to process and analyze the UK Biobank and major Alzheimer's Disease (AD) and Parkinson's Disease (PD) datasets with over 400,000 genotypes from arrays and 5000 sequences and has led to novel discoveries in diverse populations. It has provided replicable ancestry predictions, implemented rigorous QC, and conducted genetic ancestry-specific GWAS to identify systematic errors or biases through a single command. GenoTools is a customizable tool that enables users to efficiently analyze and scale genotype data with reproducible and scalable ancestry, QC, and GWAS pipelines.

2.
BMC Cancer ; 23(1): 524, 2023 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-37291514

RESUMEN

BACKGROUND: Pancreatic ductal adenocarcinoma (PDAC) is one of the deadliest cancers based on five-year survival rates. Genes contributing to chemoresistance represent novel therapeutic targets that can improve treatment response. Increased expression of ANGPTL4 in tumors correlates with poor outcomes in pancreatic cancer. METHODS: We used statistical analysis of publicly available gene expression data (TCGA-PAAD) to test whether expression of ANGPTL4 and its downstream targets, ITGB4 and APOL1, were correlated with patient survival. We measured the impact of ANGPTL4 overexpression in a common pancreatic cancer cell line, MIA PaCa-2 cells, using CRISPRa for overexpression and DsiRNA for knockdown. We characterized global gene expression changes associated with high levels of ANGPTL4 and response to gemcitabine treatment using RNA-sequencing. Gemcitabine dose response curves were calculated on modified cell lines by measuring cell viability with CellTiter-Glo (Promega). Impacts on cell migration were measured using a time course scratch assay. RESULTS: We show that ANGPTL4 overexpression leads to in vitro resistance to gemcitabine and reduced survival times in patients. Overexpression of ANGPTL4 induces transcriptional signatures of tumor invasion and metastasis, proliferation and differentiation, and inhibition of apoptosis. Analyses revealed an overlapping signature of genes associated with both ANGPTL4 activation and gemcitabine response. Increased expression of the genes in this signature in patient PDAC tissues was significantly associated with shorter patient survival. We identified 42 genes that were both co-regulated with ANGPTL4 and were responsive to gemcitabine treatment. ITGB4 and APOL1 were among these genes. Knockdown of either of these genes in cell lines overexpressing ANGPTL4 reversed the observed gemcitabine resistance and inhibited cellular migration associated with epithelial to mesenchymal transition (EMT) and ANGPTL4 overexpression. CONCLUSIONS: These data suggest that ANGPTL4 promotes EMT and regulates the genes APOL1 and ITGB4. Importantly, we show that inhibition of both targets reverses chemoresistance and decreases migratory potential. Our findings have revealed a novel pathway regulating tumor response to treatment and suggest relevant therapeutic targets in pancreatic cancer.


Asunto(s)
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Humanos , Apolipoproteína L1/genética , Apolipoproteína L1/metabolismo , Desoxicitidina/farmacología , Desoxicitidina/uso terapéutico , Transcriptoma , Transición Epitelial-Mesenquimal , Resistencia a Antineoplásicos/genética , Línea Celular Tumoral , Neoplasias Pancreáticas/tratamiento farmacológico , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/metabolismo , Gemcitabina , Carcinoma Ductal Pancreático/tratamiento farmacológico , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/metabolismo , Proliferación Celular , Regulación Neoplásica de la Expresión Génica , Proteína 4 Similar a la Angiopoyetina/genética , Proteína 4 Similar a la Angiopoyetina/metabolismo , Neoplasias Pancreáticas
3.
Res Sq ; 2023 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-36747689

RESUMEN

Background Pancreatic ductal adenocarcinoma (PDAC) is one of the deadliest cancers based on five-year survival rates. Genes contributing to chemoresistance represent novel therapeutic targets that can improve treatment response. Increased expression of ANGPTL4 in tumors correlates with poor outcomes in pancreatic cancer. Methods We used statistical analysis of publicly available gene expression data (TCGA-PAAD) to test whether expression of ANGPTL4 and its downstream targets, ITGB 4 and APOL1 , were correlated with patient survival. We measured the impact of ANGPTL4 overexpression in a common pancreatic cancer cell line, MIA PaCa-2 cells, using CRISPRa for overexpression and DsiRNA for knockdown. We characterized global gene expression changes associated with high levels of ANGPTL4 and response to gemcitabine treatment using RNA-sequencing. Gemcitabine dose response curves were calculated on modified cell lines by measuring cell viability with CellTiter-Glo (Promega). Impacts on cell migration were measured using a time course scratch assay. Results We show that ANGPTL4 overexpression leads to in vitro resistance to gemcitabine and reduced survival times in patients. Overexpression of ANGPTL4 induces transcriptional signatures of tumor invasion and metastasis, proliferation and differentiation, and inhibition of apoptosis. Analyses revealed an overlapping signature of genes associated with both ANGPTL4 activation and gemcitabine response. Increased expression of the genes in this signature in patient PDAC tissues was significantly associated with shorter patient survival. We identified 42 genes that were both co-regulated with ANGPTL4 and were responsive to gemcitabine treatment. ITGB4 and APOL1 were among these genes. Knockdown of either of these genes in cell lines overexpressing ANGPTL4 reversed the observed gemcitabine resistance and inhibited cellular migration associated with epithelial to mesenchymal transition (EMT) and ANGPTL4 overexpression. Conclusions These data suggest that ANGPTL4 promotes EMT and regulates the genes APOL1 and ITGB4 . Importantly, we show that inhibition of both targets reverses chemoresistance and decreases migratory potential. Our findings have revealed a novel pathway regulating tumor response to treatment and suggest relevant therapeutic targets in pancreatic cancer.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...