RESUMEN
We trace a polymorphic phase change in solid ammonia films through the emergence of a Frenkel exciton at 194.4 nm, for deposition temperatures of 48 K, 50 K and 52 K. Observations on a timescale of hours give unparalleled access to the individual processes of nucleation and the phase change itself. The excitonic transition is forbidden in the low temperature phase, but greater flexing of the solid state structure in the higher temperature phase makes the transition allowed, as the nano-crystals approach â¼30 unit cells through nucleation. We find activation energies of 21.7 ± 0.6 kJ mol-1 for nucleation and 22.8 ± 0.6 kJ mol-1 for the phase change, corresponding to the breaking of two to three hydrogen bonds.
RESUMEN
Many experimental parameters determine the chemical and physical properties of interstellar ice analogues, each of which may influence the molecular synthesis that occurs in such ices. In part 1, James et al., RSC Adv., 2020, 10, 37517, we demonstrated the effects that the stoichiometric mixing ratio had on the chemical and physical properties of CO2 : NH3 mixtures and the impact on molecular synthesis induced by thermal processing. Here, in part 2, we extend this to include 1 keV electron irradiation at 20 K of several stoichiometric mixing ratios of CO2 : NH3 ices followed by thermal processing. We demonstrate that not all stoichiometric mixing ratios of CO2 : NH3 ice form the same products. Not only did the 4 : 1 ratio form a different residue after thermal processing, but O3 was observed after electron irradiation at 20 K, which was not observed in the other ratios. For the other ratios, the residue formed from a thermal reaction similar to the work shown in Part 1. However, conversion of ammonium carbamate to carbamic acid was hindered due to electron irradiation at 20 K. Our results demonstrate the need to systematically investigate stoichiometric mixing ratios to better characterise the chemical and physical properties of interstellar ice analogues to further our understanding of the routes of molecular synthesis under different astrochemical conditions.
RESUMEN
Absorption spectra of vacuum-deposited films of ammonia have been obtained in the range 115â nm to 310â nm for a set of 15 deposition temperatures, Td, between 20â K and 80â K. Results focus upon the region 115â nm to 130â nm in overlapping D, E, F and GâX Rydberg transitions involving Wannier-Mott excitons. We identify two phases of ammonia, showing the solid to be polymorphic. Peak absorption wavelengths in the region of interest are found to shift to the red by 299â cm-1, for Td between 20â K to 50â K, and 1380â cm-1 for Td between 55â K to 80â K. Shifts provide evidence for the presence of spontaneously generated electric fields in these films, of values in excess of 108â V m-1 for Td of 20â K to 50â K to a few times 107â V m-1 for 55â K to 80â K. Results enable us to place a lower limit of 1.58â nm on the size of crystallites in the low temperature regime. This dimension represents 16 unit cells or 64 species, giving a more quantitative description than the nebulous term amorphous, as applied to solid ammonia. We also determine that crystallites formed in the high temperature regime contain, within ±20 %, 1688, 756 and 236 molecules of ammonia, respectively at Td of 65â K, 60â K and 55â K.
RESUMEN
The adjustment of experimental parameters in interstellar ice analogues can have profound effects on molecular synthesis within an ice system. We demonstrated this by systematically investigating the stoichiometric mixing ratios of CO2 : NH3 ices as a function of thermal processing using mid-IR and VUV spectroscopy. We observed that the type of CO2 bonding environment was dependent on the different stoichiometric mixing ratios and that this pre-determined the NH3 crystallite structure after phase change. The thermal reactivity of the ices was linked to the different chemical and physical properties of the stoichiometric ratios. Our results provide new details into the chemical and physical properties of the different stoichiometric CO2 : NH3 ices enhancing our understanding of the thermally induced molecular synthesis within this ice system.
RESUMEN
We present the first vacuum ultraviolet spectroscopic study of an interstellar ice analogue of a 1 : 100 benzene (C6H6) : carbon dioxide (CO2) mixture which has been energetically processed with 1 keV electrons. We have exploited the fact that benzene has a relatively high photoabsorption cross section in the vacuum ultraviolet region to study this dilute mixture of benzene. Before irradiation with 1 keV electrons, we observed that the benzene electronic transition bands in the C6H6 : CO2 mixture exhibits a blueshift in band position towards energies observed in the gas-phase compared with that of pure, amorphous benzene and we have attributed this to a matrix isolation effect. After irradiation, a lowering in intensity of both the carbon dioxide and benzene electronic transition bands was observed, as well as the formation of the small irradiation product, carbon monoxide. A residue was obtained at 200 K which showed characteristic features of the benzene electronic transition of 1E1u â 1A1g, but with additional structure suggesting the formation of a benzene derivative.
RESUMEN
Absorption spectra of films of N2O, in the range 115-160 nm, are presented for deposition temperatures between 33 K and 64 K. Observed shifts in the absorption energy vs. deposition temperature are analysed in terms of the temperature-dependent spontaneously electrical ('spontelectric') fields present in the films. Using a simple electrostatic theory, we suggest that (i) spectra are associated with Wannier-Mott excitons, (ii) the action of the electric field upon the excitons suffers a blockade at ≤54 K for the C-state and ≤52 K for the D-state of N2O, (iii) the blockade may be attributed to structural defects, which trap excitons, limiting their size and (iv) films form with defect-free regions containing 324 ± 3, 168 ± 46 and 95 ± 1 molecules of N2O at 54 K, 52 K and 50 K respectively, yielding an experimental indication of the scale size of regular periodicity associated with Wannier-Mott excitons. Results demonstrate how the spontelectric effect can be used as a tool for exploring the structure of solids and give a graphic image of the structural changes that take place close to the known phase change at 47 K/48 K.