Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Environ Pollut ; : 124480, 2024 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-38968985

RESUMEN

A holistic understanding of the chemical recovery of lakes from arsenic (As) pollution requires consideration of within-lake biogeochemical cycling of As and processes occurring in the surrounding catchment. This study used a watershed mass balance approach, complemented by experimental sediment incubations, to assess the mobility and transport of As within a subarctic watershed (155 km2) impacted by more than 60 years of atmospheric mining emissions. The period of record spanned a transition from drought to high streamflow between September 2017 and September 2019, which yielded insights into the interacting effects of hydrology and within-lake biogeochemical cycling of As. Internal loading of As from contaminated lake sediments (25 - 46 kg As year-1) and contributions from terrestrial sources (16 - 56 kg As yr-1) continue to negatively impact lake water quality (19 - 144 µg As L-1), but the relative importance of these loads varies seasonally and inter-annually in response to changing hydrological conditions. Wet conditions resulted in greater transport of As from terrestrial reservoirs and upstream areas, shorter lake water retention time, and increased the downstream export of As. During dry periods, the lake was disconnected from the surrounding watershed resulting in limited terrestrial contributions and longer lake water residence time, which delayed recovery due to the greater relative influence of internal loading from contaminated sediments. This study highlights that changing hydroclimatic regimes will alter trajectories of chemical recovery for arsenic impacted lakes through the coupling of within-lake and watershed transport processes.

2.
Sci Total Environ ; 929: 172596, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38657821

RESUMEN

We studied the occurrence of dissolved thiolated Arsenic (As) in legacy tailings systems in Ontario and Nova Scotia, Canada, and used aqueous and mineralogical speciation analyses to assess its governing geochemical controls. Surface-accessible and inundated tailings in Cobalt, Ontario, contained ∼1 wt-% As mainly hosted in secondary arsenate minerals (erythrite, yukonite, and others) and traces of primary sulfide minerals (cobaltite, gersdorffite and others). Significant fractions of thiolated As (up to 5.9 % of total dissolved As) were detected in aqueous porewater and surface water samples from these sites, comprising mostly monothioarsenate, and smaller amounts of di- and tri-thioarsenates as well as methylated thioarsenates. Tailings at the Goldenville and Montague sites in Nova Scotia contained less (<0.5 wt-%) As, hosted mostly in arsenopyrite and As-bearing pyrite, than the Cobalt sites, but exhibited higher proportions of dissolved thiolated As (up to 17.3 % of total dissolved As, mostly mono- and di-thioarsenate and traces of tri-thioarsenate). Dissolved thiolated As was most abundant in sub-oxic porewaters and inundated tailings samples across the studied sites, and its concentrations were strongly related to the prevailing redox conditions and porewater hydrochemistry, and to a lesser extent, the As-bearing mineralogy. Our novel results demonstrate that thiolated As species play an important role in the cycling of As in mine waste systems and surrounding environments, and should be considered in mine waste management strategies for high-As sites.

3.
J Hazard Mater ; 458: 132037, 2023 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-37459758

RESUMEN

Historical mining and mineral processing at the former Giant Mine (Yellowknife, NT, Canada) created an enduring legacy of arsenic (As) and antimony (Sb) contamination. Approximately 237,000 tonnes of arsenic trioxide roaster waste (ATRW) generated between 1948 and 1999 remains stored on-site in underground chambers. We studied the chemical forms and phase associations of As and Sb to improve understanding of ATRW environmental behavior. Although arsenolite [As2O3] is the principal As and Sb host, we also observed minor associations of As with Fe oxides. Arsenic K-edge X-ray absorption spectroscopy (XAS) revealed As(III) dominated ATRW, with some As(V) and As(-I) also present. Arsenic coordination and bonding is consistent with arsenolite, while scanning electron microscopy-energy dispersive X-ray spectroscopy (SEM-EDS) showed minor As association with Fe oxides and arsenopyrite [FeAsS]. Antimony K-edge XAS revealed variable proportions of Sb(III) and Sb(V), with Sb-O, Sb-Sb and Sb-As bonding consistent with stibioclaudetite [AsSbO3] or Sb-substituted arsenolite. Electron microprobe analysis (EMPA) results showed variable but quantitative Sb substitution for As in arsenolite grains, possibly influencing ATRW solubility and reactivity under environmental conditions. Overall, our results reveal complex As and Sb phase associations with important implications for ongoing remediation efforts and long-term environmental fate of ATRW solids.

4.
Environ Earth Sci ; 81(4): 137, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35222729

RESUMEN

Arsenic (As) is commonly sequestered at the sediment-water interface (SWI) in mining-impacted lakes through adsorption and/or co-precipitation with authigenic iron (Fe)-(oxy)hydroxides or sulfides. The results of this study demonstrate that the accumulation of organic matter (OM) in near-surface sediments also influences the mobility and fate of As in sub-Arctic lakes. Sediment gravity cores, sediment grab samples, and porewaters were collected from three lakes downstream of the former Tundra gold mine, Northwest Territories, Canada. Analysis of sediment using combined micro-X-ray fluorescence/diffraction, K-edge X-ray Absorption Near-Edge Structure (XANES), and organic petrography shows that As is associated with both aquatic (benthic and planktonic alginate) and terrestrially derived OM (e.g., cutinite, funginite). Most As is hosted by fine-grained Fe-(oxy)hydroxides or sulfide minerals (e.g., goethite, orpiment, lepidocrocite, and mackinawite); however, grain-scale synchrotron-based analysis shows that As is also associated with amorphous OM. Mixed As oxidation states in porewater (median = 62% As (V), 18% As (III); n = 20) and sediment (median = 80% As (-I) and (III), 20% As (V); n = 9) indicate the presence of variable redox conditions in the near-surface sediment and suggest that post-depositional remobilization of As has occurred. Detailed characterization of As-bearing OM at and below the SWI suggests that OM plays an important role in stabilizing redox-sensitive authigenic minerals and associated As. Based on these findings, it is expected that increased concentrations of labile OM will drive post-depositional surface enrichment of As in mining-impacted lakes and may increase or decrease As flux from sediments to overlying surface waters. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s12665-022-10213-2.

5.
Sci Total Environ ; 823: 153409, 2022 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-35090929

RESUMEN

This study compares select dust sampling apparatuses and monitoring methods by investigating fugitive tailings dust transport and deposition at an abandoned Zn-Pb-Cu mine located in eastern, Canada. The sampling apparatuses and monitoring methods are compared in terms of capturing seasonal trends and spatial extent, as well as the ability to evaluate impacts to aquatic ecosystems. Methods evaluated include satellite imagery, lichen tissue analysis, passive dry deposition collectors (Pas-DDs) with two different configurations, dust deposition gauges (DDGs) and a high volume total suspended particulate (Hi-Vol TSP) sampler. All methods utilized demonstrated benefits and challenges in relation to seasonal sampling and determining spatial extent of dust deposition. Results indicate that the polyurethane foam disk configuration of the Pas-DD sampler efficiently accumulates dust in comparison to the glass fiber filter configuration and DDGs which both likely underestimate dust deposition. Lichen and satellite imagery were shown to be effective tools for identifying areas of interest and extent of contamination. At the study site, it was observed that dust deposition was highest in the winter months and lowest in the summer months, likely due to increased erosion in winter weather conditions (higher wind speeds and/or freeze drying effect).


Asunto(s)
Contaminantes Atmosféricos , Polvo , Contaminantes Atmosféricos/análisis , Polvo/análisis , Ecosistema , Monitoreo del Ambiente/métodos , Viento
6.
Sci Total Environ ; 784: 147105, 2021 Aug 25.
Artículo en Inglés | MEDLINE | ID: mdl-33905938

RESUMEN

Mine tailings exposed to water and oxygen generate acid mine drainage (AMD) when the neutralizing minerals are insufficient to buffer the acid produced by sulfide oxidation. Mineral reactivity, such as sulfide oxidation and carbonate dissolution, leads to several changes within mine tailings in terms of their physical, mineralogical, and geochemical properties, which may lead to the release of metal(oid)s (e.g., As, Cu, Zn, Fe, S) into the environment. Fresh and oxidized tailings were sampled at two vertical profiles in a tailings storage facility (TSF). The TSF contains tailings from gold ore processing at a mine that has been closed for more than 25 years. Oxidized tailings have formed by in-situ oxidation of fresh tailings over more than 20 years. The collected samples were analyzed for: i) chemical composition by inductively coupled plasma atomic emission spectroscopy (ICP-AES), X-ray fluorescence (XRF), and total S/C; and ii) mineralogical composition by X-ray diffraction (XRD), Mineral Liberation Analyzer (MLA), Mossbauer spectroscopy, and Fe L-edge X-ray absorption near-edge spectroscopy (XANES). Mineralogically, the fresh tailings included more than 22 wt% carbonates and more than 10 wt% sulfides. In contrast, the oxidized tailings were composed mainly of secondary minerals such as iron oxy-hydroxides and gypsum. Geochemically, the fresh tailings exhibited a circumneutral behavior during weathering cell experiments and contaminants such as As were negligibly released (<0.3 mg/L). The latter is explained by formation of secondary iron oxy-hydroxides, which are known for the capacity to uptake several contaminants from the leachate. Long term oxidation of fresh tailings will lead to highly oxidized tailings similar to those collected in situ. The oxidized tailings exhibited an acidic behavior despite sulfide depletion due to latent acidity. The geochemical behavior was strongly controlled by the reactivity of secondary minerals (e.g., dissolution of gypsum and iron oxy-hydroxides). Quantitatively, the oxidized tailings released 163 mg/kg Fe, around 12,000 mg/kg S, and around 6 mg/kg Zn.

7.
Sci Total Environ ; 776: 145926, 2021 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-33652309

RESUMEN

The estimation of geochemical background is complex in areas impacted by point sources of atmospheric emissions due to unknowns about pollutant dispersion, persistence of pollutants on the landscape, and natural concentrations of elements associated with parent material. This study combined mineralogical analysis with conventional statistical and geospatial methods to separate anthropogenically impacted soils from unimpacted soils in the Yellowknife area, Northwest Territories, Canada, a region that was exposed to 60 years of arsenic (As)-rich atmospheric mining emissions (1938-1999) and that hosts natural enrichments of As. High concentrations of As (up to 4700 mg kg-1) were measured in publicly accessible soils near decommissioned roaster stacks in the region and strong relationships between As and distance from the main emission sources persisted in surface soils and soils at depth in the soil profile more than 60 years after the bulk of mining emissions were released. Mineralogical analysis provided unambiguous evidence regarding the source of As minerals and highlighted that most As in surface soils within 15 km of Yellowknife is hosted as anthropogenic arsenic trioxide (As2O3), produced by roaster stack emissions. Statistical protocols for the estimation of geochemical background were applied to an existing database of till geochemistry (N = 1490) after removing samples from mining impacted areas. Results suggested geochemical background for the region is 0.25-15 mg kg-1 As, comparable to global averages, with upper thresholds elevated in volcanic units (30 mg kg-1 As) that often host sulfide mineralization in greenstone belts in the region.

8.
Sci Total Environ ; 709: 136115, 2020 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-31887529

RESUMEN

Sediment cores were collected from two lakes in the Courageous Lake Greenstone Belt (CLGB), central Northwest Territories, Canada, to examine the influence of late-Holocene warming on the transport and fate of arsenic (As) in sub-Arctic lakes. In both lakes, allochthonous As-bearing minerals (i.e. arsenopyrite and scorodite) were identified in sediment deposited during times of both regional warming and cooling, suggesting that weathering of bedrock and derived surficial materials provides a continual source of As to lakes of the CLGB. However, maximum porewater As (84 µg·L-1 and 15 µg·L-1) and reactive organic matter (OM; aquatic and terrestrial-derived) concentrations in each lake are coincident with known periods of regional climate warming. It is inferred that increased biological production in surface waters and influx of terrigenous OM led to the release of sedimentary As to porewater through reductive dissolution of As-bearing Fe-(oxy)hydroxides and scorodite during episodes of regional warming. Elevated sedimentary As concentrations (median: 36 mg·kg-1; range: 29 to 49 mg·kg-1) are observed in sediment coeval with the Holocene Thermal Maximum (ca. 5430 ± 110 to 4070 ± 130 cal. years BP); at these depths, authigenic As-bearing framboidal pyrite is the primary host of As in sediment and the influence of organic matter on the precipitation of As-bearing framboidal pyrite is apparent petrographically. These findings suggest that increased biological productivity and weathering of terrestrial OM associated with climate warming influences redox cycles in the near-surface sediment and enhances the mobility of As in northern lakes. Knowledge generated from this study is relevant for predicting future climate change-driven variations in metal(loid) cycling in aquatic systems and can be used to interpret trends in long-term environmental monitoring data at historical, modern, and future metal mines in northern environments.

9.
Sci Total Environ ; 684: 326-339, 2019 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-31153079

RESUMEN

The seasonal variation in lake water arsenic (As) and antimony (Sb) concentrations was assessed in four small (<1.5km2) subarctic lakes impacted by As and Sb emissions from legacy mining activities near Yellowknife, Northwest Territories, Canada. Substantial variation in As concentrations were measured over the two-year period of study in all but the deepest lake (maximum depth 6.9m), including a four-fold difference in As in the shallowest lake ([As]: 172-846µgL-1; maximum depth 0.8m). Arsenic concentrations were enriched following ice cover development in the three shallowest lakes (50-110%) through a combination of physical and biogeochemical processes. Early winter increases in As were associated with the exclusion of solutes from the developing ice-cover; and large increases in As were measured once oxygen conditions were depleted to the point of anoxia by mid-winter. The onset of anoxic conditions within the water column was associated with large increases in the concentration of redox sensitive elements in lake waters (As, iron [Fe], and manganese [Mn]), suggesting coupling of As mobility with Fe and Mn cycling. In contrast, there was little difference in Sb concentrations under ice suggesting that Sb mobility was controlled by factors other than Fe and Mn associated redox processes. A survey of 30 lakes in the region during fall (open-water) and late-winter (under-ice) revealed large seasonal differences in surface water As were more common in lakes with a maximum depth <4m. This threshold highlights the importance of winter conditions and links between physical lake properties and biogeochemical processes in the chemical recovery of As-impacted subarctic landscapes. The findings indicate annual remobilization of As from contaminated lake sediments may be inhibiting recovery in small shallow lakes that undergo seasonal transitions in redox state.

10.
Environ Pollut ; 247: 980-988, 2019 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-30823353

RESUMEN

A sediment core was obtained from Moira Lake to study the legacy of contamination and remediation at the Deloro industrial site which includes 95-years of operations involving gold mining, mineral processing, and arsenic-based pesticide production resulting in high levels of arsenic, cobalt, and nickel. A timeline for the sediment core was established by 210Pb dating and used to evaluate the geochemical record and the impact on primary production and subfossil cladocerans. In the early 1800s, there was an initial increase in the arsenic, cobalt and nickel concentrations due to industrial development. By the 1850s, the rate of enrichment increased due to the conglomeration of small-scale operations. In the 1960s, the concentrations of those metal(loid)s decreased following the cessation of the industrial activity at Deloro and the initiation of a clean-up effort. Primary production, inferred by chlorophyll-a concentrations, initially decreased as the metal(loid)s concentrations increased. This was followed by a recovery of the chlorophyll-a concentrations and further increases in production to higher levels than recorded prior to the Deloro years. Secondary production, inferred by cladoceran assemblage structure, was initially dominated by bosminids. The assemblage then changed to one dominated by chydorids and daphnids with the change occurring contemporaneous with the change in chlorophyll-a. However, the changes in primary and secondary production occurred during the period of accelerated metal(loid) enrichment, suggesting limited impact of contamination on primary and secondary producers. Loss on ignition results revealed that during the period of accelerated arsenic enrichment, the carbonate content of the sediments increased while the percent organic content decreased. This work contributes to ongoing research to establish the environmental legacy of historical industrial activities within complex ecosystems. Furthermore, the combination of geochemical (i.e. 210Pb, ICP-OES, XANES) and ecological analysis provides a more complete picture of the complex interactions that have occurred in Moira Lake.


Asunto(s)
Sedimentos Geológicos/análisis , Contaminantes Químicos del Agua/análisis , Animales , Arsénico/análisis , Biodiversidad , Cladóceros , Cobalto/análisis , Monitoreo del Ambiente , Contaminación Ambiental , Oro , Residuos Industriales , Lagos/química , Radioisótopos de Plomo , Minería , Níquel/análisis , Ontario , Plaguicidas
11.
Environ Sci Technol ; 53(8): 4088-4098, 2019 04 16.
Artículo en Inglés | MEDLINE | ID: mdl-30829475

RESUMEN

Results from the analysis of aqueous and solid-phase V speciation within samples collected from the Hazeltine Creek catchment affected by the August 2014 Mount Polley mine tailings dam failure in British Columbia, Canada, are presented. Electron microprobe and X-ray absorption near-edge structure (XANES) analysis found that V is present as V3+ substituted into magnetite and V3+ and V4+ substituted into titanite, both of which occur in the spilled Mount Polley tailings. Secondary Fe oxyhydroxides forming in inflow waters and on creek beds have V K-edge XANES spectra exhibiting E1/2 positions and pre-edge features consistent with the presence of V5+ species, suggesting sorption of this species on these secondary phases. PHREEQC modeling suggests that the stream waters mostly contain V5+ and the inflow and pore waters contain a mixture of V3+ and V5+. These data, and stream, inflow, and pore water chemical data, suggest that dissolution of V(III)-bearing magnetite, V(III)- and V(IV)-bearing titanite, V(V)-bearing Fe(-Al-Si-Mn) oxhydroxides, and V-bearing Al(OH)3 and/or clay minerals may have occurred. In the circumneutral pH environment of Hazeltine Creek, elevated V concentrations are likely naturally attenuated by formation of V(V)-bearing secondary Fe oxyhydroxide, Al(OH)3, or clay mineral colloids, suggesting that the V is not bioavailable. A conceptual model describing the origin and fate of V in Hazeltine Creek that is applicable to other river systems is presented.


Asunto(s)
Vanadio , Contaminantes Químicos del Agua , Colombia Británica , Minerales , Ríos
12.
Sci Total Environ ; 654: 563-575, 2019 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-30447595

RESUMEN

Forty-seven sediment cores were collected as part of a spatial survey of Long Lake, Yellowknife, NWT, Canada to elucidate the physical and geochemical controls on the distribution of arsenic (As) in sediments impacted by the aerial deposition of arsenic trioxide (As2O3) from ore roasting at legacy gold mines. High-resolution profiles of dissolved As in bottom water and porewater were also collected to determine As remobilization and diffusion rates across the sediment-water interface. Arsenic concentrations in Long Lake sediments ranged from 2.2 to 3420 mg kg-1 (dry weight). Two distinct types of sediment As concentration profiles were identified and are interpreted to represent erosional and depositional areas. Water depth is the best predictor of As concentration in the top 5 cm of sediments due to the inferred focusing of fine-grained As2O3 into deeper water. At greater sediment depths, iron (Fe) concentration, as a likely indicator of As, Fe, and sulphur (S) co-diagenesis, was the best predictor of As concentration. The sediments are a source of dissolved As to surface waters through diffusion-controlled release to bottom water. Arsenic concentrations, solid-phase speciation, and diffusive efflux varied laterally across the lake bottom and with sediment depth due to the interplay between sediment-focusing processes and redox reactions, which has implications for human health and ecological risk assessments.

13.
Sci Total Environ ; 622-623: 1668-1679, 2018 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-29111252

RESUMEN

Climate change is profoundly affecting seasonality, biological productivity, and hydrology in high northern latitudes. In sensitive subarctic environments exploitation of mineral resources led to contamination and it is not known how cumulative effects of resource extraction and climate warming will impact ecosystems. Gold mines near Yellowknife, Northwest Territories, subarctic Canada, operated from 1938 to 2004 and released >20,000t of arsenic trioxide (As2O3) to the environment through stack emissions. This release resulted in elevated arsenic concentrations in lake surface waters and sediments relative to Canadian drinking water standards and guidelines for the protection of aquatic life. A meta-analytical approach is used to better understand controls on As distribution in lake sediments within a 30-km radius of historic mineral processing activities. Arsenic concentrations in the near-surface sediments range from 5mg·kg-1 to over 10,000mg·kg-1 (median 81mg·kg-1; n=105). Distance and direction from the historic roaster stack are significantly (p<0.05) related to sedimentary As concentration, with highest As concentrations in sediments within 11km and lakes located downwind. Synchrotron-based µXRF and µXRD confirm the persistence of As2O3 in near surface sediments of two lakes. Labile organic matter (S1) is significantly (p<0.05) related to As and S concentrations in sediments and this relationship is greatest in lakes within 11km from the mine. These relations are interpreted to reflect labile organic matter acting as a substrate for microbial growth and mediation of authigenic precipitation of As-sulphides in lakes close to the historic mine where As concentrations are highest. Continued climate warming is expected to lead to increased biological productivity and changes in organic geochemistry of lake sediments that are likely to play an important role in the mobility and fate of As in aquatic ecosystems.

14.
Environ Pollut ; 234: 630-641, 2018 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-29223820

RESUMEN

The controls on the mobility and fate of arsenic in lakes impacted by historical gold ore roasting in northern Canada have been examined. A detailed characterization of arsenic solid and aqueous phases in lake waters, lake sediments and sediment porewaters as well as surrounding soils was conducted in three small lakes (<200ha) downwind and within 5 km of the historic mining and roasting operations of Giant Mine (Northwest Territories). These lakes are marked by differing limnological characteristics such as area, depth and organic content. Radiometric age-dating shows that the occurrence of arsenic trioxide in lake sediments coincides with the regional onset of roasting activities. Quantification by advanced electron microscopy shows that arsenic trioxide accounts for up to 6 wt% of the total arsenic in sediments. The bulk (>80 wt%) of arsenic is contained in the form of secondary sulphide precipitates, with iron oxy-hydroxides hosting a minimal amount of arsenic (<1 wt%). Soluble arsenic trioxide particles act as the primary source of arsenic into sediment porewaters. Dissolved arsenic in reducing porewaters both precipitates in-situ as secondary sulphides, and diffuses upwards into the overlying lake waters. Geogenic arsenic phases are present in sediments in low concentrations and are not considered a significant source of arsenic to porewaters or lake waters. Sediment-water interface diffusive flux calculations suggest that the diffusion of dissolved arsenic from porewaters, combined with lake water residence time, are the predominant mechanisms controlling arsenic concentrations in lake waters.


Asunto(s)
Arsénico/análisis , Arsenicales/análisis , Oro , Lagos/análisis , Minería , Óxidos/análisis , Contaminantes Químicos del Agua/análisis , Trióxido de Arsénico , Canadá , Monitoreo del Ambiente , Sedimentos Geológicos/análisis
15.
Environ Geochem Health ; 34(2): 279-88, 2012 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-21983883

RESUMEN

Simulated lung fluids are solutions designed to mimic the composition of human interstitial lung fluid as closely as possible. Analysis of mineral dusts using such solutions has been used to evaluate the respiratory bioaccessibility of various elements for which solubility in the lungs is a primary determinant of reactivity. The objective of this study was to employ simulated lung fluid analysis to investigate the respiratory bioaccessibility of nickel in soils. Current occupational guidelines in Australia regulate nickel compounds in terms of water solubility, though this may not be an accurate estimation of the total nickel that will dissociate in the lungs. Surface soils were collected from the city of Kalgoorlie in Western Australia, the site of an operational nickel smelter and metal mining activities. The fraction of the samples less than 10 µm was extracted from the soil, and it was this sub-10-µm fraction that was found to hold most of the total nickel present in the soil. The fine fraction was analyzed using a simulated lung fluid (modified Gamble's solution) to isolate the nickel phases soluble in the lungs. In addition, a sequential extraction was employed to compare the bioaccessible fraction to those dissolved from different binding forms in the soil. In all samples, the simulated lung fluid extracted more nickel than the two weakest leaches of the sequential extraction combined, providing a more representative nickel bioaccessibility value than the current water leach method.


Asunto(s)
Exposición por Inhalación , Pulmón/metabolismo , Modelos Biológicos , Níquel/metabolismo , Contaminantes del Suelo/metabolismo , Secreciones Corporales/metabolismo , Monitoreo del Ambiente , Minería , Medición de Riesgo , Suelo/química , Solubilidad
16.
BMC Microbiol ; 10: 205, 2010 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-20673331

RESUMEN

BACKGROUND: Arsenic is toxic to most living cells. The two soluble inorganic forms of arsenic are arsenite (+3) and arsenate (+5), with arsenite the more toxic. Prokaryotic metabolism of arsenic has been reported in both thermal and moderate environments and has been shown to be involved in the redox cycling of arsenic. No arsenic metabolism (either dissimilatory arsenate reduction or arsenite oxidation) has ever been reported in cold environments (i.e. < 10 degrees C). RESULTS: Our study site is located 512 kilometres south of the Arctic Circle in the Northwest Territories, Canada in an inactive gold mine which contains mine waste water in excess of 50 mM arsenic. Several thousand tonnes of arsenic trioxide dust are stored in underground chambers and microbial biofilms grow on the chamber walls below seepage points rich in arsenite-containing solutions. We compared the arsenite oxidisers in two subsamples (which differed in arsenite concentration) collected from one biofilm. 'Species' (sequence) richness did not differ between subsamples, but the relative importance of the three identifiable clades did. An arsenite-oxidising bacterium (designated GM1) was isolated, and was shown to oxidise arsenite in the early exponential growth phase and to grow at a broad range of temperatures (4-25 degrees C). Its arsenite oxidase was constitutively expressed and functioned over a broad temperature range. CONCLUSIONS: The diversity of arsenite oxidisers does not significantly differ from two subsamples of a microbial biofilm that vary in arsenite concentrations. GM1 is the first psychrotolerant arsenite oxidiser to be isolated with the ability to grow below 10 degrees C. This ability to grow at low temperatures could be harnessed for arsenic bioremediation in moderate to cold climates.


Asunto(s)
Arsenitos/metabolismo , Bacterias/enzimología , Proteínas Bacterianas/genética , Agua Dulce/microbiología , Oxidorreductasas/genética , Regiones Árticas , Bacterias/clasificación , Bacterias/aislamiento & purificación , Bacterias/metabolismo , Proteínas Bacterianas/metabolismo , Canadá , Minería , Datos de Secuencia Molecular , Territorios del Noroeste , Oxidación-Reducción , Oxidorreductasas/metabolismo , Filogenia
17.
Environ Sci Technol ; 44(7): 2667-74, 2010 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-20218545

RESUMEN

Bioaccessibility tests and mineralogical analyses were performed on arsenic-contaminated tailings and soils from gold mine districts of Nova Scotia, Canada, to examine the links between soil composition, mineralogy, and arsenic bioaccessibility. Arsenic bioaccessibility ranges from 0.1% to 49%. A weak correlation was observed between total and bioaccessible arsenic concentrations, and the arsenic bioaccessibility was not correlated with other elements. Bulk X-ray absorption near-edge structure analysis shows arsenic in these near-surface samples is mainly in the pentavalent form, indicating that most of the arsenopyrite (As(1-)) originally present in the tailings and soils has been oxidized during weathering reactions. Detailed mineralogical analyses of individual samples have identified up to seven arsenic species, the relative proportions of which appear to affect arsenic bioaccessibility. The highest arsenic bioaccessibility (up to 49%) is associated with the presence of calcium-iron arsenate. Samples containing arsenic predominantly as arsenopyrite or scorodite have the lowest bioaccessibility (<1%). Other arsenic species identified (predominantly amorphous iron arsenates and arsenic-bearing iron(oxy)hydroxides) are associated with intermediate bioaccessibility (1 to 10%). The presence of a more soluble arsenic phase, even at low concentrations, results in increased arsenic bioaccessibility from the mixed arsenic phases associated with tailings and mine-impacted soils.


Asunto(s)
Arsénico/análisis , Oro/química , Minerales/análisis , Minería , Suelo/análisis , Disponibilidad Biológica , Nueva Escocia , Compuestos Orgánicos/análisis , Tamaño de la Partícula , Espectroscopía de Absorción de Rayos X
18.
Environ Sci Technol ; 41(15): 5542-7, 2007 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-17822130

RESUMEN

It is widely accepted that the use of total metal concentrations in soil overestimates metal risk from human ingestion of contaminated soils. In vitro simulators have been used to estimate the fraction of arsenic present in soil that is bioaccessible in the human digestive track. These approaches assume that the bioaccessible fraction remains constant across soil total metal concentrations and that intestinal microbiota do not contribute to arsenic release. Here, we evaluate both of these assumptions in two size fractions (bulk and <38 microm) of arsenic-rich mine tailings from the Goldenville, Lower Seal Harbour, and Montague Gold Districts, Nova Scotia. These samples were evaluated using an in vitro gastrointestinal model, the Simulator of the Human Intestinal Ecosystem (SHIME). Arsenic bioaccessibility, which ranged between 2 and 20% in the small intestine and 4 and 70% in the colon, was inversely related to total arsenic concentration in the mine tailings. Additionally, arsenic bioaccessibility was greater in the bulk fraction than in the <38 microm fraction in the small intestine and colon while colon microbes increased the bioaccessibility of arsenic in mine tailings. These results suggest that the practice of using a constant percent arsenic bioaccessibility across all metal concentrations in risk assessment should be revisited.


Asunto(s)
Arsénico/metabolismo , Tracto Gastrointestinal/microbiología , Minería , Modelos Biológicos , Contaminantes del Suelo/metabolismo , Disponibilidad Biológica , Colon/metabolismo , Ingestión de Alimentos , Humanos , Intestino Delgado/metabolismo , Tamaño de la Partícula
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...