Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Anal Bioanal Chem ; 415(18): 4467-4478, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-36905407

RESUMEN

Lysozyme (LYZ) is a small cationic protein which is widely used for medical treatment and in the food industry to act as an anti-bacterial agent; however, it can trigger allergic reactions. In this study, high-affinity molecularly imprinted nanoparticles (nanoMIPs) were synthesized for LYZ using a solid-phase approach. The produced nanoMIPs were electrografted to screen-printed electrodes (SPEs), disposable electrodes with high commercial potential, to enable electrochemical and thermal sensing. Electrochemical impedance spectroscopy (EIS) facilitated fast measurement (5-10 min) and is able to determine trace levels of LYZ (pM) and can discriminate between LYZ and structurally similar proteins (bovine serum albumin, troponin-I). In tandem, thermal analysis was conducted with the heat transfer method (HTM), which is based on monitoring the heat transfer resistance at the solid-liquid interface of the functionalized SPE. HTM as detection technique guaranteed trace-level (fM) detection of LYZ but needed longer analysis time compared to EIS measurement (30 min vs 5-10 min). Considering the versatility of the nanoMIPs which can be adapted to virtually any target of interest, these low-cost point-of-care sensors hold great potential to improve food safety.


Asunto(s)
Impresión Molecular , Nanopartículas , Muramidasa/análisis , Alérgenos , Impresión Molecular/métodos , Nanopartículas/química , Electrodos , Albúmina Sérica Bovina , Técnicas Electroquímicas/métodos , Límite de Detección
2.
Mikrochim Acta ; 189(2): 73, 2022 01 24.
Artículo en Inglés | MEDLINE | ID: mdl-35075499

RESUMEN

Redesigning 3D-printed flow cells is reported used for heat transfer based detection of biomolecules from a flow-through system to an addition-type measurement cell. The aim of this study is to assess the performance of this new measurement design and critically analyse the influence of material properties and 3D printing approach on thermal analysis. Particular attention is paid to reduce the time to stabilisation, the sample volume in order to make the technique suitable for clinical applications, and improving the sensitivity of the platform by decreasing the noise and interference of air bubbles. The three different approaches that were studied included a filament polylactic acid cell using only fused filament fabrication (FFF), a resin cell printed using stereolitography (SLA), and finally a design made of copper, which was manufactured by combining metal injection moulding (MIM) with fused filament fabrication (FFF). Computational fluid dynamic (CFD) modelling was undertaken using ANSYS Fluent V18.1 to provide insight into the flow of heat within the measurement cell, facilitating optimisation of the system and theoretical response speed.It was shown that the measurement cells using SLA had the lowest noise (~ 0.6%) and shortest measurement time (15 min), whereas measurement cells produced using other approaches had lower specificity or suffered from voiding issues. Finally, we assessed the potential of these new designs for detection of biomolecules and amoxicillin, a commonly used beta lactam antibiotic, to demonstrate the proof of concept. It can be concluded that the resin addition-type measurement cells produced with SLA are an interesting affordable alternative, which were able to detect amoxicillin with high sensitivity and have great promise for clinical applications due to the disposable nature of the measurement cells in addition to small sample volumes.


Asunto(s)
Amoxicilina/química , Calor , Impresión Tridimensional , Simulación por Computador , Hidrodinámica , Ensayo de Materiales , Modelos Químicos , Polímeros Impresos Molecularmente
3.
Adv Colloid Interface Sci ; 299: 102563, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34826745

RESUMEN

Pluronic (PEO-PPO-PEO) block copolymers can form nano-sized micelles with a structure composed of a hydrophobic PPO core and hydrophilic PEO shell layer. Pluronics are U.S. Food and Drug Administration approved polymers, which are widely used for solubilization of drugs and their delivery, gene/therapeutic delivery, diagnostics, and tissue engineering applications due to their non-ionic properties, non-toxicity, micelle forming ability, excellent biocompatibility and biodegradability. Although Pluronics have been employed as drug carrier systems for several decades, numerous issues such as rapid dissolution, shorter residence time in biological media, fast clearance and weak mechanical strength have hindered their efficacy. Pluronics have been functionalized with pH-sensitive, biological-responsive moieties, antibodies, aptamers, folic acid, drugs, different nanoparticles, and photo/thermo-responsive hydrogels. These functionalization strategies enable Pluronics to act as stimuli responsive and targeted drug delivery vehicles. Moreover, Pluronics have emerged in nano-emulsion formulations and have been utilized to improve the properties of cubosomes, dendrimers and nano-sheets, including their biocompatibility and aqueous solubility. Functionalization of Pluronics results in the significant improvement of target specificity, loading capacity, biocompatibility of nanoparticles and stimuli responsive hydrogels for the promising delivery of a range of drugs. Therefore, this review presents an overview of all advancements (from the last 15 years) in functionalized Pluronics, providing a valuable tool for industry and academia in order to optimize their use in drug or therapeutic delivery, in addition to several other biomedical applications.


Asunto(s)
Poloxámero , Estados Unidos
4.
Psychon Bull Rev ; 28(2): 494-502, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33174087

RESUMEN

Another person's gaze direction is a rich source of social information, especially eyes gazing toward prominent or relevant objects. To guide attention to these important stimuli, visual search mechanisms may incorporate sophisticated coding of eye-gaze and its spatial relationship to other objects. Alternatively, any guidance might reflect the action of simple perceptual 'templates' tuned to visual features of socially relevant objects, or intrinsic salience of direct-gazing eyes for human vision. Previous findings that direct gaze (toward oneself) is prioritised over averted gaze do not distinguish between these accounts. To resolve this issue, we compared search for eyes gazing toward a prominent object versus gazing away, finding more efficient search for eyes 'gazing toward' the object. This effect was most clearly seen in target-present trials when gaze was task-relevant. Visual search mechanisms appear to specify gazer-object relations, a computational building-block of theory of mind.


Asunto(s)
Atención/fisiología , Ojo , Fijación Ocular/fisiología , Reconocimiento Visual de Modelos/fisiología , Percepción Social , Teoría de la Mente/fisiología , Adulto , Humanos
5.
Biomimetics (Basel) ; 4(1)2019 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-31105203

RESUMEN

Antidepressants such as amitryptiline and fluoxetine are on the list of modern essential medicines of the World Health Organization. However, there are growing concerns regarding the ecological impact of these pharmaceuticals, leading to a great need to improve current wastewater treatment procedures. In this contribution, we will report on the use of molecularly imprinted polymers (MIPs) for the extraction of antidepressants in water samples. MIPs were developed for fluoxetine and duloxetine, antidepressants belonging to the class of selective serotonin reuptake inhibitors (SSRIs). The binding capacity of these microparticles was evaluated using ultraviolet-visible (UV-Vis) spectroscopy. A new high-performance liquid chromatography (HPLC) procedure coupled to UV detection was developed, which enabled the study of mixtures of fluoxetine and duloxetine with other nitrogen-containing compounds. These results indicate that it is possible to selectively extract SSRIs from complex samples. Therefore, these versatile polymers are a promising analytical tool for the clean-up of water samples, which will benefit aquatic life and reduce the ecological impact of pharmaceuticals.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA