Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
bioRxiv ; 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38798364

RESUMEN

Alzheimer's Disease (AD) is a global health issue, affecting over 6 million in the United States, with that number expected to increase as the aging population grows. As a neurodegenerative disorder that affects memory and cognitive functions, it is well established that AD is associated with cardiovascular risk factors beyond only cerebral decline. However, the study of cerebrovascular techniques for AD is still evolving. Here, we provide reproducible methods to measure impedance-based pulse wave velocity (PWV), a marker of arterial stiffness, in the systemic vascular (aortic PWV) and in the cerebral vascular (cerebral PWV) systems. Using aortic impedance and this relatively novel technique of cerebral impedance to comprehensively describe the systemic vascular and the cerebral vascular systems, we examined the sex-dependent differences in 5x transgenic mice (5XFAD) with AD under normal and high-fat diet, and in wild-type mice under a normal diet. Additionally, we validated our method for measuring cerebrovascular impedance in a model of induced stress in 5XFAD. Together, our results show that sex and diet differences in wildtype and 5XFAD mice account for very minimal differences in cerebral impedance. Interestingly, 5XFAD, and not wildtype, male mice on a chow diet show higher cerebral impedance, suggesting pathological differences. Opposingly, when we subjected 5XFAD mice to stress, we found that females showed elevated cerebral impedance. Using this validated method of measuring impedance-based aortic and cerebral PWV, future research may explore the effects of modifying factors including age, chronic diet, and acute stress, which may mediate cardiovascular risk in AD.

2.
Hypertension ; 81(3): 436-446, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38164753

RESUMEN

Hypertension is the primary modifiable risk factor for cardiovascular, renal, and cerebrovascular diseases and is considered the main contributing factor to morbidity and mortality worldwide. Approximately 50% of hypertensive and 25% of normotensive people exhibit salt sensitivity of blood pressure, which is an independent risk factor for cardiovascular disease. Human and animal studies demonstrate that the immune system plays an important role in the etiology and pathogenesis of salt sensitivity of blood pressure, kidney damage, and vascular diseases. Antigen-presenting and adaptive immune cells are implicated in salt-sensitive hypertension and salt-induced renal and vascular injury. Elevated sodium activates antigen-presenting cells to release proinflammatory cytokines including IL (interleukin) 6, tumor necrosis factor-α, IL-1ß, and accumulate isolevuglandin-protein adducts. In turn, these activate T cells release prohypertensive cytokines including IL-17A. Moreover, high-salt intake is associated with gut dysbiosis, leading to inflammation, oxidative stress, and blood pressure elevation but the mechanistic contribution to salt-sensitivity of blood pressure is not clearly understood. Here, we discuss recent advances in research investigating the cause, potential biomarkers, and therapeutic targets for salt-sensitive hypertension as they pertain to the gut microbiome, immunity, and inflammation.


Asunto(s)
Hipertensión , Enfermedades Renales , Animales , Humanos , Cloruro de Sodio Dietético/efectos adversos , Cloruro de Sodio , Enfermedades Renales/complicaciones , Presión Sanguínea/fisiología , Inflamación , Citocinas , Interleucina-6
3.
Hypertension ; 81(3): 516-529, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37675576

RESUMEN

BACKGROUND: The mechanisms by which salt increases blood pressure in people with salt sensitivity remain unclear. Our previous studies found that high sodium enters antigen-presenting cells (APCs) via the epithelial sodium channel and leads to the production of isolevuglandins and hypertension. In the current mechanistic clinical study, we hypothesized that epithelial sodium channel-dependent isolevuglandin-adduct formation in APCs is regulated by epoxyeicosatrienoic acids (EETs) and leads to salt-sensitive hypertension in humans. METHODS: Salt sensitivity was assessed in 19 hypertensive subjects using an inpatient salt loading and depletion protocol. Isolevuglandin-adduct accumulation in APCs was analyzed using flow cytometry. Gene expression in APCs was analyzed using cellular indexing of transcriptomes and epitopes by sequencing analysis of blood mononuclear cells. Plasma and urine EETs were measured using liquid chromatography-mass spectrometry. RESULTS: Baseline isolevuglandin+ APCs correlated with higher salt-sensitivity index. Isolevuglandin+ APCs significantly decreased from salt loading to depletion with an increasing salt-sensitivity index. We observed that human APCs express the epithelial sodium channel δ subunit, SGK1 (salt-sensing kinase serum/glucocorticoid kinase 1), and cytochrome P450 2S1. We found a direct correlation between baseline urinary 14,15 EET and salt-sensitivity index, whereas changes in urinary 14,15 EET negatively correlated with isolevuglandin+ monocytes from salt loading to depletion. Coincubation with 14,15 EET inhibited high-salt-induced increase in isolevuglandin+ APC. CONCLUSIONS: Isolevuglandin formation in APCs responds to acute changes in salt intake in salt-sensitive but not salt-resistant people with hypertension, and this may be regulated by renal 14,15 EET. Baseline levels of isolevuglandin+ APCs or urinary 14,15 EET may provide diagnostic tools for salt sensitivity without a protocol of salt loading.


Asunto(s)
Hipertensión , Lípidos , Cloruro de Sodio Dietético , Humanos , Cloruro de Sodio Dietético/metabolismo , Canales Epiteliales de Sodio/metabolismo , Cloruro de Sodio/metabolismo , Eicosanoides , Presión Sanguínea/fisiología
4.
Front Physiol ; 14: 1167904, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37293263

RESUMEN

Nearly 30% of adults consume less than the estimated average daily requirement of magnesium (Mg2+), and commonly used medications, such as diuretics, promote Mg2+ deficiency. Higher serum Mg2+ levels, increased dietary Mg2+ in-take, and Mg2+ supplementation are each associated with lower blood pressure, suggesting that Mg2+-deficiency contributes to the pathogenesis of hypertension. Antigen-presenting cells, such as monocytes and dendritic cells, are well-known to be involved in the pathogenesis of hypertension. In these cells, processes implicated as necessary for increased blood pressure include activation of the NLRP3 inflammasome, IL-1ß production, and oxidative modification of fatty acids such as arachidonic acid, forming isolevuglandins (IsoLGs). We hypothesized that increased blood pressure in response to dietary Mg2+-depletion leads to increased NLRP3, IL-1ß, and IsoLG production in antigen presenting cells. We found that a Mg2+-depleted diet (0.01% Mg2+ diet) increased blood pressure in mice compared to mice fed a 0.08% Mg2+ diet. Mg2+-depleted mice did not exhibit an increase in total body fluid, as measured by quantitative magnetic resonance. Plasma IL-1ß concentrations were increased (0.13 ± 0.02 pg/mL vs. 0.04 ± 0.02 pg/mL). Using flow cytometry, we observed increased NLRP3 and IL-1ß expression in antigen-presenting cells from spleen, kidney, and aorta. We also observed increased IsoLG production in antigen-presenting cells from these organs. Primary culture of CD11c+ dendritic cells confirmed that low extracellular Mg2+ exerts a direct effect on these cells, stimulating IL-1ß and IL-18 production. The present findings show that NLRP3 inflammasome activation and IsoLG-adduct formation are stimulated when dietary Mg2+ is depleted. Interventions and increased dietary Mg2+ consumption may prove beneficial in decreasing the prevalence of hypertension and cardiovascular disease.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA