Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
ISA Trans ; 132: 419-427, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-35760654

RESUMEN

In this work, a laboratory scaled industrial interconnected nonlinear Multi-Input|Multi-Output (MIMO) three-tank system, was modelled to control the liquid levels. Ensuing the tradition in the process industry to apply linear controller to most control processes, a linear control scheme was developed for this system. However, since linear schemes are proximate to actual process models, they may not be adequate, especially for highly nonlinear systems. Therefore, a nonlinear control scheme was also developed and compared with the linear scheme. Specifically, optimal linear and nonlinear controllers were designed. In summary, the results of the two control schemes showed adequate performance. However, the linear controller had more robust control and required lesser computational demand compared to the nonlinear scheme. To enhance the computational demand of the nonlinear scheme, a third-party MATLAB toolbox, Automatic Control and Dynamic Optimization (ACADO) toolbox, that interfaces MATLAB with C++ to speed up computations was also utilised, and its results compared, and tentatively validate the earlier solved nonlinear control scheme.

2.
Sci Rep ; 12(1): 9846, 2022 06 14.
Artículo en Inglés | MEDLINE | ID: mdl-35701515

RESUMEN

Consequent to the importance of crude palm oil (CPO) to global food processing industries, and the need for quality assurance of CPO. A kinetic model that describes changes of free fatty acid (FFA) in industrially stored CPO has been developed. CPO FFA is a well-known indicator of the deterioration of CPO. The effect of initial moisture content, storage temperature, and time on CPO FFA have been investigated in this work. Specifically, statistical multi-regression models for changes in FFA and moisture content (MC) were developed at P-value < 0.05 or 95% confidence interval fence. It was found that CPO FFA increases with an increase in moisture content, temperature, and time in their linear term and in respect to decreases in their quadratic term, and interaction between moisture content and temperature. The CPO MC was also found to decrease with an increase in temperature and time and increases in the quadratic term of temperature. Although while the model for CPO FFA, based on Fisher's F-test: [Formula: see text], showed no lack-of-fit; that of CPO MC showed lack-of-fit, [Formula: see text]. Furthermore, based on inference from the statistical model, their kinetic models were also developed. While the CPO FFA kinetic, found to be a half-order kinetic model and its other auxiliary models showed a very good fit (R2 {0.9933-0.8614} and RMSE {0.0020-3.6716}); that of CPO MC was a poorly fitted first-order kinetic model (R2 {0.9885-0.3935} and RMSE {0.0605-17.8501}).


Asunto(s)
Ácidos Grasos no Esterificados , Petróleo , Aceite de Palma , Temperatura
3.
Int J Mol Sci ; 23(6)2022 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-35328584

RESUMEN

Byproducts obtained from fish processing account for up to 70% of their live weight and represent a large amount of unused raw materials rich in proteins, fats, minerals, and vitamins. Recently, the management of the use of predominantly cold-water fish byproducts has become a priority for many processing companies. This paper describes the biotechnological processing of byproducts of warm-water Cyprinus carpio skeletons into gelatins. A Taguchi experimental design with two process factors (HCl concentration during demineralization of the starting material and the amount of enzyme during enzyme conditioning of the collagen) examined at three levels (0.5, 1.0 and 2.0 wt%; 0.0, 0.1 and 0.2 wt% respectively) was used to optimize the processing of fish tissue into gelatin. Depending on the preparation conditions, four gelatin fractions were prepared by multi-stage extraction from the starting material with a total yield of 18.7-55.7%. Extensive characterization of the gel-forming and surface properties of the prepared gelatins was performed. Gelatins belong to the group of zero-low-medium Bloom value (0-170 Bloom) and low-medium viscosity (1.1-4.9 mPa·s) gelatins and are suitable for some food, pharmaceutical, and cosmetic applications. During processing, the pigment can be isolated; the remaining solid product can then be used in agriculture, and H3PO4Ca can be precipitated from the liquid byproduct after demineralization. The carp byproduct processing technology is environmentally friendly and meets the requirements of zero-waste technology.


Asunto(s)
Carpas , Gelatina , Animales , Colágeno , Esqueleto , Agua
4.
Molecules ; 26(2)2021 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-33445455

RESUMEN

In recent decades, food waste management has become a key priority of industrial and food companies, state authorities and consumers as well. The paper describes the biotechnological processing of mechanically deboned chicken meat (MDCM) by-product, rich in collagen, into gelatins. A factorial design at two levels was used to study three selected process conditions (enzyme conditioning time, gelatin extraction temperature and gelatin extraction time). The efficiency of the technological process of valorization of MDCM by-product into gelatins was evaluated by % conversion of the by-product into gelatins and some qualitative parameters of gelatins (gel strength, viscosity and ash content). Under optimal processing conditions (48-72 h of enzyme conditioning time, 73-78 °C gelatin extraction temperature and 100-150 min gelatin extraction time), MDCM by-product can be processed with 30-32% efficiency into gelatins with a gel strength of 140 Bloom, a viscosity of 2.5 mPa.s and an ash content of 5.0% (which can be reduced by deionization using ion-exchange resins). MDCM is a promising food by-product for valorization into gelatins, which have potential applications in food-, pharmaceutical- and cosmetic fields. The presented technology contributes not only to food sustainability but also to the model of a circular economy.


Asunto(s)
Huesos/química , Gelatina/síntesis química , Carne/análisis , Animales , Pollos , Geles , Temperatura , Viscosidad
5.
Molecules ; 25(3)2020 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-31979349

RESUMEN

Every year, the poultry industry produces a large number of by-products such as chicken heads containing a considerable proportion of proteins, particularly collagen. To prepare gelatin is one of the possibilities to advantageously utilize these by-products as raw materials. The aim of the paper was to process chicken heads into gelatins. An innovative method for conditioning starting raw material was using the proteolytic enzyme. Three technological factors influencing the yield and properties of extracted gelatins were monitored including the amount of enzyme used in the conditioning of the raw material (0.4% and 1.6%), the time of the conditioning (18 and 48 h), and the first gelatin extraction time (1 and 4 h). The gelatin yield was between 20% and 36%. The gelatin gel strength ranged from 113 to 355 Bloom. The viscosity of the gelatin solution was determined between 1.4 and 9.5 mPa.s. The content of inorganic solids varied from 2.3% to 3.9% and the melting point of the gelatin gel was recorded between 34.5 and 42.2 °C. This study has shown that gelatin obtained from chicken heads has a promising potential with diverse possible applications in the food industry, pharmacy, and cosmetics.


Asunto(s)
Pollos/metabolismo , Colágeno/metabolismo , Industria de Procesamiento de Alimentos/métodos , Gelatina/aislamiento & purificación , Animales , Colágeno/química , Alimentos , Industria de Procesamiento de Alimentos/instrumentación , Gelatina/análisis , Gelatina/química , Geles/química , Geles/aislamiento & purificación , Cabeza , Péptido Hidrolasas , Factores de Tiempo , Viscosidad
6.
Appl Biochem Biotechnol ; 168(4): 917-27, 2012 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-22903323

RESUMEN

Short and long tendons of abattoir cattle are collagen by-products of the meat industry. They offer no utilisation at present, being a raw material source of over 90 % protein characteristic. This contribution deals with the three-stage extraction of gelatine from short cattle tendons. The principle of treatment consists in processing degreased tendons in the first processing stage in an environment resulting in the swelling of the starting material. In the second stage, the material is treated with a proteolytic enzyme to produce such disruption of the collagen substrate that makes gelatine extraction when boiling possible in the third stage of the process. In order to study the influence of the significant parameters during the extraction process on gelatine yield, experiments were planned using a factor experiment of 2(3) types. The variables under study were the duration of the second processing stage (5-25 h), temperature in the first and second processing stages (10-40 °C) and the addition of a proteolytic enzyme (1-5 %) on the quantity of the extracted gelatine. The results were processed statistically, and statistical significance of the studied factors was thus found. Contour graphs were plotted to easily survey the influence of the observed factors on gelatine yield. The process achieves up to 71 % efficiency, runs under atmospheric pressure and mild reaction conditions, and is conducive to preparing quality gelatines.


Asunto(s)
Mataderos , Gelatina/aislamiento & purificación , Tendones/química , Análisis de Varianza , Animales , Bovinos , Concentración de Iones de Hidrógeno , Proteolisis , Temperatura , Tendones/metabolismo
7.
Waste Manag Res ; 29(3): 260-7, 2011 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-20483878

RESUMEN

Poultry feathers make up for as much as 8.5% of chicken weight and represent a considerable amount of almost pure keratin waste which is not being adequately utilized at the present time. The present study dealt with the processing of poultry feathers through a two-stage alkaline-enzymatic hydrolysis. In the first stage, feathers were mixed with a 0.1 or 0.3% KOH water solution in a 1 : 50 ratio and were incubated at 70°C for 24 h. After adjusting pH to 9, the effects examined in the second processing stage on the amount of degraded feathers were those of proteolytic enzyme additions (1-5%), time (4-8 h) and temperature (50-70°C). Processing feathers in 0.3% KOH and hydrolysing for 8 h in the second stage at 70°C with a 5% dose of enzyme (relative to dry feathers weight) produced approx. 91% degradation. Keratin hydrolysate is distinct for its high nitrogen content and reasonable inorganic solids level. Two-stage technology of alkaline-enzymatic hydrolysing of poultry feathers in an environment of 0.3% KOH achieves high efficiency under quite mild reaction conditions (temperature not exceeding 70°C with pH in a mildly alkaline region), and is feasible from an economic viewpoint. Keratin hydrolysate can find particular application in packaging technology (films, foils and encapsulates).


Asunto(s)
Plumas/química , Residuos Industriales/análisis , Queratinas/química , Péptido Hidrolasas/química , Aves de Corral , Eliminación de Residuos/métodos , Animales , Concentración de Iones de Hidrógeno , Hidrólisis , Residuos Industriales/estadística & datos numéricos , Temperatura
8.
Waste Manag Res ; 27(1): 31-7, 2009 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-19220990

RESUMEN

Short tendons of slaughtered cattle, which consist of relatively pure collagen, were cleaned of lipoid substances and non-collagen proteins using a commercial enzymatic preparation. Diluted acetic acid was used to separate the acid-soluble collagen (M(N) approximately 300 kDa) for a yield of around 5%. The residue was extracted with water and the extraction conditions were derived to produce gelatine with a gel rigidity of 350-410 degrees Bloom and a yield of 55-60%. Prolonged extraction time, as well as increased extraction temperature, led to a deterioration in the gelatine quality and, therefore, the residue after aqueous extraction was processed by enzymatic hydrolysis into a collagen hydrolysate of M(N) = 500-1000 Da. Such hydrolysates can be utilized in industry as humectants in cosmetic skin-care preparations or as a secondary industrial raw material for producing surfactants of acylamino-carboxy acid type, which are known for their favourable dermatological effects. Apart from a maximum of 7% lipoid substances the proposed procedure produced no further waste so it may be regarded as a 'clean technology'.


Asunto(s)
Colágeno/química , Gelatina/química , Carne , Tendones/química , Animales , Bovinos , Alimentos , Contaminación de Alimentos , Industria de Alimentos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...