Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Comput Biol Chem ; 110: 108051, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38520883

RESUMEN

Amidst the Zn2+-dependant isoforms of the HDAC family, HDAC6 has emerged as a potential target associated with an array of diseases, especially cancer and neuronal disorders like Rett's Syndrome, Alzheimer's disease, Huntington's disease, etc. Also, despite the availability of a handful of HDAC inhibitors in the market, their non-selective nature has restricted their use in different disease conditions. In this situation, the development of selective and potent HDAC6 inhibitors will provide efficacious therapeutic agents to treat different diseases. In this context, this study has been carried out to evaluate the potential structural contributors of quinazoline-cap-containing HDAC6 inhibitors via machine learning (ML), conventional classification-dependant QSAR, and MD simulation-based binding mode of interaction analysis toward HDAC6 binding. This combined conventional and modern molecular modeling study has revealed the significance of the quinazoline moiety, substitutions present at the quinazoline cap group, as well as the importance of molecular property, number of hydrogen bond donor-acceptor functions, carbon-chlorine distance that significantly affects the HDAC6 binding of these inhibitors, subsequently affecting their potency . Interestingly, the study also revealed that the substitutions such as the chloroethyl group, and bulky quinazolinyl cap group can affect the binding of the cap function with the amino acid residues present in the loops proximal to the catalytic site of HDAC6. Such contributions of cap groups can lead to both stabilization and destabilization of the cap function after occupying the hydrophobic catalytic site by the aryl hydroxamate linker-ZBG functions.


Asunto(s)
Histona Desacetilasa 6 , Inhibidores de Histona Desacetilasas , Simulación de Dinámica Molecular , Histona Desacetilasa 6/antagonistas & inhibidores , Histona Desacetilasa 6/metabolismo , Histona Desacetilasa 6/química , Inhibidores de Histona Desacetilasas/química , Inhibidores de Histona Desacetilasas/farmacología , Humanos , Estructura Molecular , Relación Estructura-Actividad Cuantitativa , Quinazolinas/química , Quinazolinas/farmacología , Aprendizaje Automático
2.
J Biomol Struct Dyn ; : 1-17, 2024 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-38165455

RESUMEN

Human meprin ß is a Zn2+-containing multidomain metalloprotease enzyme that belongs to the astacin family of the metzincin endopeptidase superfamily. Meprin ß, with its diverse tissue expression pattern and wide substrate specificity, plays a significant role in various biological processes, including regulation of IL-6R pathways, lung fibrosis, collagen deposition, cellular migration, neurotoxic amyloid ß levels, and inflammation. Again, meprin ß is involved in Alzheimer's disease, hyperkeratosis, glomerulonephritis, diabetic kidney injury, inflammatory bowel disease, and cancer. Despite a crucial role in diverse disease processes, no such promising inhibitors of meprin ß are marketed to date. Thus, it is an unmet requirement to find novel promising meprin ß inhibitors that hold promise as potential therapeutics. In this study, a series of arylsulfonamide and tertiary amine-based hydroxamate derivatives as meprin ß inhibitors has been analyzed through ligand-based and structure-based in silico approaches to pinpoint their structural and physiochemical requirements crucial for exerting higher inhibitory potential. This study identified different crucial structural features such as arylcarboxylic acid, sulfonamide, and arylsulfonamide moieties, as well as hydrogen bond donor and hydrophobicity, inevitable for exerting higher meprin ß inhibition, providing valuable insight for their further future development.Communicated by Ramaswamy H. Sarma.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...