Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Theranostics ; 14(10): 3777-3792, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38994018

RESUMEN

Rationale: Growing evidence has demonstrated that miRNA-21 (miR-21) upregulation is closely associated with tumor pathogenesis. However, the mechanisms by which miR-21 inhibition modulates the immunosuppressive tumor microenvironment (TME) and improves tumor sensitivity to immune checkpoint blockade therapies remain largely unexplored. In this study, we demonstrate the precise delivery of anti-miR-21 using a PD-L1-targeting peptide conjugate (P21) to the PD-L1high TME. Methods: Investigating miR-21 inhibition mechanisms involved conducting quantitative real-time PCR, western blot, flow cytometry, and confocal microscopy analyses. The antitumor efficacy and immune profile of P21 monotherapy, or combined with anti-PD-L1 immune checkpoint inhibitors, were assessed in mouse models bearing CT26.CL25 tumors and 4T1 breast cancer. Results Inhibition of oncogenic miR-21 in cancer cells by P21 efficiently activates tumor suppressor genes, inducing autophagy and endoplasmic reticulum stress. Subsequent cell-death-associated immune activation (immunogenic cell death) is initiated via the release of damage-associated molecular patterns. The in vivo results also illustrated that the immunogenic cell death triggered by P21 could effectively sensitize the immunosuppressive TME. That is, P21 enhances CD8+ T cell infiltration in tumor tissues by conferring immunogenicity to dying cancer cells and promoting dendritic cell maturation. Meanwhile, combining P21 with an anti-PD-L1 immune checkpoint inhibitor elicits a highly potent antitumor effect in a CT26.CL25 tumor-bearing mouse model and 4T1 metastatic tumor model. Conclusions: Collectively, we have clarified a miR-21-related immunogenic cell death mechanism through the precise delivery of anti-miR-21 to the PD-L1high TME. These findings highlight the potential of miR-21 as a target for immunotherapeutic interventions.


Asunto(s)
Antígeno B7-H1 , Muerte Celular Inmunogénica , Inmunoterapia , MicroARNs , Microambiente Tumoral , MicroARNs/genética , MicroARNs/metabolismo , Animales , Ratones , Antígeno B7-H1/metabolismo , Antígeno B7-H1/antagonistas & inhibidores , Microambiente Tumoral/efectos de los fármacos , Microambiente Tumoral/inmunología , Muerte Celular Inmunogénica/efectos de los fármacos , Línea Celular Tumoral , Inmunoterapia/métodos , Femenino , Ratones Endogámicos BALB C , Humanos , Inhibidores de Puntos de Control Inmunológico/farmacología , Inhibidores de Puntos de Control Inmunológico/uso terapéutico , Autofagia/efectos de los fármacos , Neoplasias de la Mama/inmunología , Neoplasias de la Mama/terapia , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/patología , Neoplasias de la Mama/genética
2.
ACS Nano ; 18(25): 16297-16311, 2024 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-38867457

RESUMEN

While mesalamine, a 5-aminosalicylic acid (5-ASA), is pivotal in the management of inflammatory bowel disease (IBD) through both step-up and top-down approaches in clinical settings, its widespread utilization is limited by low bioavailability at the desired site of action due to rapid and extensive absorption in the upper gastrointestinal (GI) tract. Addressing mesalamine's pharmacokinetic challenges, here, we introduce nanoassemblies composed exclusively of a mesalamine prodrug that pairs 5-ASA with a mucoadhesive and cathepsin B-cleavable peptide. In an IBD model, orally administered nanoassemblies demonstrate enhanced accumulation and sustained retention in the GI tract due to their mucoadhesive properties and the epithelial enhanced permeability and retention (eEPR) effect. This retention enables the efficient uptake by intestinal pro-inflammatory macrophages expressing high cathepsin B, triggering a burst release of the 5-ASA. This cascade fosters the polarization toward an M2 macrophage phenotype, diminishes inflammatory responses, and simultaneously facilitates the delivery of active agents to adjacent epithelial cells. Therefore, the nanoassemblies show outstanding therapeutic efficacy in inhibiting local inflammation and contribute to suppressing systemic inflammation by restoring damaged intestinal barriers. Collectively, this study highlights the promising role of the prodrug nanoassemblies in enhancing targeted drug delivery, potentially broadening the use of mesalamine in managing IBD.


Asunto(s)
Enfermedades Inflamatorias del Intestino , Macrófagos , Mesalamina , Profármacos , Mesalamina/química , Mesalamina/farmacología , Profármacos/química , Profármacos/farmacología , Macrófagos/efectos de los fármacos , Macrófagos/metabolismo , Enfermedades Inflamatorias del Intestino/tratamiento farmacológico , Animales , Ratones , Humanos , Nanopartículas/química , Mucosa Intestinal/metabolismo , Mucosa Intestinal/efectos de los fármacos , Ratones Endogámicos C57BL , Antiinflamatorios no Esteroideos/química , Antiinflamatorios no Esteroideos/farmacología , Antiinflamatorios no Esteroideos/administración & dosificación
3.
Adv Sci (Weinh) ; 11(22): e2309917, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38520717

RESUMEN

Lipid nanoparticles (LNPs) exhibit remarkable mRNA delivery efficiency, yet their majority accumulate in the liver or spleen after injection. Tissue-specific mRNA delivery can be achieved through modulating LNP properties, such as tuning PEGylation or varying lipid components systematically. In this paper, a streamlined method is used for incorporating tumor-targeting peptides into the LNPs; the programmed death ligand 1 (PD-L1) binding peptides are conjugated to PEGylated lipids via a copper-free click reaction, and directly incorporated into the LNP composition (Pep LNPs). Notably, Pep LNPs display robust interaction with PD-L1 proteins, which leads to the uptake of LNPs into PD-L1 overexpressing cancer cells both in vitro and in vivo. To evaluate anticancer immunotherapy mediated by restoring tumor suppressor, mRNA encoding phosphatase and tensin homolog (PTEN) is delivered via Pep LNPs to PTEN-deficient triple-negative breast cancers (TNBCs). Pep LNPs loaded with PTEN mRNA specifically promotes autophagy-mediated immunogenic cell death in 4T1 tumors, resulting in effective anticancer immune responses. This study highlights the potential of tumor-targeted LNPs for mRNA-based cancer therapy.


Asunto(s)
Antígeno B7-H1 , Nanopartículas , Fosfohidrolasa PTEN , Fosfohidrolasa PTEN/metabolismo , Fosfohidrolasa PTEN/genética , Nanopartículas/química , Animales , Ratones , Antígeno B7-H1/metabolismo , Antígeno B7-H1/genética , Femenino , Modelos Animales de Enfermedad , Lípidos/química , Humanos , Línea Celular Tumoral , Neoplasias de la Mama Triple Negativas/genética , Neoplasias de la Mama Triple Negativas/terapia , Ratones Endogámicos BALB C , Inmunoterapia/métodos , Liposomas
4.
Bioact Mater ; 34: 138-149, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38223538

RESUMEN

Oral administration facilitates the direct delivery of drugs to lesions within the small intestine and colon, making it an ideal approach for treating patients with inflammatory bowel disease. However, multiple physical barriers impede the delivery of oral RNA drugs through the gastrointestinal tract. Herein, we developed a novel oral siRNA delivery system that protects nucleic acids in extreme environments by employing exosomes derived from milk to encapsulate tumor necrosis factor-alpha (TNF-α) siRNA completely. The remarkable structural stability of milk-derived exosomes (M-Exos), as opposed to those from HEK293T cells, makes them exceptional siRNA carriers. Results demonstrate that milk exosomes loaded with TNF-α siRNA (M-Exo/siR) can effectively inhibit the expression of TNF-α-related inflammatory cytokines. Moreover, given that milk exosomes are composed of unique lipids with high bioavailability, orally administered M-Exo/siR effectively reach colonic tissues, leading to decreased TNF-α expression and successful alleviation of colitis symptoms in a dextran sulfate sodium-induced inflammatory bowel disease murine model. Hence, milk-derived exosomes carrying TNF-α siRNA can be effectively employed to treat inflammatory bowel disease. Indeed, using exosomes naturally derived from milk may shift the current paradigm of oral gene delivery, including siRNA.

5.
Biomater Res ; 27(1): 124, 2023 Nov 29.
Artículo en Inglés | MEDLINE | ID: mdl-38031117

RESUMEN

BACKGROUND: Recently, increased attention has been given on exosomes as ideal nanocarriers of drugs owing to their intrinsic properties that facilitate the transport of biomolecular cargos. However, large-scale exosome production remains a major challenge in the clinical application of exosome-based drug delivery systems. Considering its biocompatibility and stability, bovine milk is a suitable natural source for large-scale and stable exosome production. Because the active-targeting ability of drug carriers is essential to maximize therapeutic efficacy and minimize side effects, precise membrane functionalization strategies are required to enable tissue-specific delivery of milk exosomes with difficulty in post-isolation modification. METHODS: In this study, the membrane functionalization of a milk exosome platform modified using a simple post-insertion method was examined comprehensively. Exosomes were engineered from bovine milk (mExo) with surface-tunable modifications for the delivery of tumor-targeting doxorubicin (Dox). The surface modification of mExo was achieved through the hydrophobic insertion of folate (FA)-conjugated lipids. RESULTS: We have confirmed the stable integration of functionalized PE-lipid chains into the mExo membrane through an optimized post-insertion technique, thereby effectively enhancing the surface functionality of mExo. Indeed, the results revealed that FA-modified mExo (mExo-FA) improved cellular uptake in cancer cells via FA receptor (FR)-mediated endocytosis. The designed mExo-FA selectively delivered Dox to FR-positive tumor cells and triggered notable tumor cell death, as confirmed by in vitro and in vivo analyses. CONCLUSIONS: This simple and easy method for post-isolation modification of the exosomal surface may be used to develop milk-exosome-based drug delivery systems.

6.
Adv Drug Deliv Rev ; 201: 115073, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37657644

RESUMEN

The era of RNA medicine has become a reality with the success of messenger RNA (mRNA) vaccines against COVID-19 and the approval of several RNA interference (RNAi) agents in recent years. Particularly, therapeutics based on RNAi offer the promise of targeting intractable and previously undruggable disease genes. Recent advances have focused in developing delivery systems to enhance the poor cellular uptake and insufficient pharmacokinetic properties of RNAi therapeutics and thereby improve its efficacy and safety. However, such approach has been mainly achieved via lipid nanoparticles (LNPs) or chemical conjugation with N-Acetylgalactosamine (GalNAc), thus current RNAi therapy has been limited to liver diseases, most likely to encounter liver-targeting limitations. Hence, there is a huge unmet medical need for intense evolution of RNAi therapeutics delivery systems to target extrahepatic tissues and ultimately extend their indications for treating various intractable diseases. In this review, challenges of delivering RNAi therapeutics to tumors and major organs are discussed, as well as their transition to clinical trials. This review also highlights innovative and promising preclinical RNAi-based delivery platforms for the treatment of extrahepatic diseases.


Asunto(s)
COVID-19 , Nanopartículas , Humanos , Tratamiento con ARN de Interferencia , ARN Interferente Pequeño , Vacunas contra la COVID-19 , COVID-19/terapia , Interferencia de ARN , Nanopartículas/química
7.
J Control Release ; 359: 85-96, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37230294

RESUMEN

Immune checkpoint blockade (ICB) therapy has shown remarkable outcomes along with multiple cases of complete regression in clinical practice. But unfortunately, most patients who have an immunosuppressive tumor immune microenvironment (TIME) respond poorly to these therapies. To improve the response rate of the patients, various treatment modalities that can boost cancer immunogenicity and remove immune tolerance have been combined with ICB therapies. However, the systemic administration of multiple immunotherapeutic agents can potentially cause severe off-target toxicities and immune-related adverse events, diminishing antitumor immunity and increasing the risk of additional complications. To address these problems, Immune Checkpoint-Targeted Drug Conjugates (IDCs) have been widely investigated for their ability to offer distinct advantages in remodeling the TIME for cancer immunotherapy. IDCs, consisting of immune checkpoint-targeting moieties, cleavable linkers, and payloads of immunotherapeutic agents, have a similar structure to conventional antibody-drug conjugates (ADCs) but target and block the immune checkpoint receptors, and then release the payloads conjugated through cleavable linkers. These unique mechanisms of IDCs prompt an immune-responsive TIME by modulating the multiple steps related to the cancer-immunity cycle, ultimately leading to tumor eradication. This review outlines the mode of action and advantages of IDCs. In addition, various IDCs for combinational immunotherapy are reviewed. Finally, the potential and challenges of IDCs for clinical translation are discussed.


Asunto(s)
Neoplasias , Humanos , Neoplasias/tratamiento farmacológico , Factores Inmunológicos , Inmunoterapia , Microambiente Tumoral
8.
Pharmaceutics ; 14(6)2022 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-35745843

RESUMEN

In vitro transcribed mRNA for the synthesis of any given protein has shown great potential in cancer gene therapy, especially in cancer vaccines for immunotherapy. To overcome physiological barriers, such as rapid degradation by enzymatic attack and poor cellular uptake due to their large size and hydrophilic properties, many delivery carriers for mRNAs are being investigated for improving the bioavailability of mRNA. Recently, cell-penetrating peptides (CPPs) have received attention as promising tools for gene delivery. In terms of their biocompatibility and the ability to target specific cells with the versatility of peptide sequences, they may provide clues to address the challenges of conventional delivery systems for cancer mRNA delivery. In this study, optimal conditions for the CPP/mRNA complexes were identified in terms of complexation capacity and N/P ratio, and protection against RNase was confirmed. When cancer cells were treated at a concentration of 6.8 nM, which could deliver the highest amount of mRNA without toxicity, the amphipathic CPP/mRNA complexes with a size less than 200 nm showed high cellular uptake and protein expression. With advances in our understanding of CPPs, CPPs designed to target tumor tissues will be promising for use in developing a new class of mRNA delivery vehicles in cancer therapy.

9.
Front Cell Dev Biol ; 10: 815205, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35359449

RESUMEN

Human hair dermal papillary (DP) cells comprising mesenchymal stem cells in hair follicles contribute critically to hair growth and cycle regulation. The transition of hair follicles from telogen to anagen phase is the key to regulating hair growth, which relies heavily on the activation of DP cells. In this paper, we suggested exosomes derived from bovine colostrum (milk exosomes, Milk-exo) as a new effective non-surgical therapy for hair loss. Results showed that Milk-exo promoted the proliferation of hair DP cells and rescued dihydrotestosterone (DHT, androgen hormones)-induced arrest of follicle development. Milk-exo also induced dorsal hair re-growth in mice at the level comparable to minoxidil treatment, without associated adverse effects such as skin rashes. Our data demonstrated that Milk-exo accelerated the hair cycle transition from telogen to anagen phase by activating the Wnt/ß-catenin pathway. Interestingly, Milk-exo has been found to stably retain its original properties and efficacy for hair regeneration after freeze-drying and resuspension, which is considered critical to use it as a raw material applied in different types of alopecia medicines and treatments. Overall, this study highlights a great potential of an exosome from colostrum as a therapeutic modality for hair loss.

10.
J Control Release ; 345: 62-74, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35263615

RESUMEN

Upregulation of oncogenic miRNA21 (miR-21) plays a pivotal role in proliferation, migration and invasion of cancer cells. In addition to cancer cells, tumor-associated macrophages (TAMs) also have high abundance of miR-21, which accelerates malignant progression of tumors in the late stages of carcinogenesis. Despite of the pro-tumorigenic functions of miR-21 in TAMs and cancer cells, reliable therapeutic strategies to simultaneously inhibit miR-21 activity in both types of cell have not yet been developed. In this study, we designed a dual-targeting drug delivery system of miR-21 inhibitors that could bind to both tumor cells and macrophages with overexpressed PD-L1 receptors. This peptide-oligonucleotide conjugate (Pep-21) consists of a PDL1-binding peptide covalently linked with an anti-miR-21 inhibitor via click chemistry. Pep-21 was preferentially internalized in both cell types, consequently depleting endogenous miR-21. Our studies found that Pep-21 treatment reduced tumor cell migration, reprogrammed immunosuppressive M2-type TAMs into M1-type macrophages, and restrained tumor progression. Collectively, neutralization of miR-21 activity in both cancer cells and TAMs can be a promising strategy for effective antitumor responses.


Asunto(s)
MicroARNs , Neoplasias , Antígeno B7-H1/metabolismo , Humanos , Neoplasias/tratamiento farmacológico , Péptidos , Microambiente Tumoral , Macrófagos Asociados a Tumores
11.
Biomater Sci ; 10(8): 2076-2087, 2022 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-35315847

RESUMEN

Despite the rise in the global burden of inflammatory bowel disease, there is a lack of safe and effective therapies that can meet the needs of clinical patients. In this study, we investigated the beneficial effects of bovine milk, especially colostrum-derived exosomes (Col-exo) in a murine model of ulcerative colitis induced by dextran sodium sulfate (DSS). Col-exo activated the proliferation of colonic epithelial cells and macrophages, and created an environment to relieve inflammation by effectively removing reactive oxygen species and regulating the expression of immune cytokines. Besides, Col-exo could pass through the gastrointestinal tract intact and efficiently deliver bioactive cargoes to the stomach, small intestine, and colon. Our results showed that oral gavage of Col-exo can alleviate colitis symptoms including weight loss, gastrointestinal bleeding, and chronic diarrhea by modulating intestinal inflammatory immune responses. Overall, bovine colostrum-derived exosomes with excellent structural and functional stability may offer great potential as natural therapeutics for the recovery of colitis.


Asunto(s)
Colitis , Exosomas , Animales , Colitis/inducido químicamente , Colitis/prevención & control , Calostro/metabolismo , Citocinas/metabolismo , Sulfato de Dextran , Modelos Animales de Enfermedad , Exosomas/metabolismo , Femenino , Humanos , Inflamación/metabolismo , Ratones , Ratones Endogámicos C57BL , Estrés Oxidativo , Embarazo
12.
Adv Healthc Mater ; 11(6): e2102027, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34865307

RESUMEN

As wound healing is an extremely complicated process, consisting of a cascade of interlocking biological events, successful wound healing requires a multifaceted approach to support appropriate and rapid transitions from the inflammatory to proliferative and remodeling phases. In this regard, here the potential use of bovine milk extracellular vesicles (EVs) to enhance wound healing is investigated. The results show that milk EVs promote fibroblast proliferation, migration, and endothelial tube formation. In particular, milk EVs derived from colostrum (Colos EVs) contain various anti-inflammatory factors facilitating the transition from inflammation to proliferation phase, as well as factors for tissue remodeling and angiogenesis. In an excisional wound mouse model, Colos EVs promote re-epithelialization, activate angiogenesis, and enhance extracellular matrix maturation. Interestingly, Colos EVs are further found to be quite resistant to freeze-drying procedures, maintaining their original characteristics and efficacy for wound repair after lyophilization. These findings on the superior stability and excellent activity of milk Colos EVs indicate that they hold great promise to be developed as anti-inflammatory therapeutics, especially for the treatment of cutaneous wounds.


Asunto(s)
Calostro , Vesículas Extracelulares , Animales , Femenino , Inflamación , Ratones , Leche , Embarazo , Cicatrización de Heridas/fisiología
13.
Int J Mol Sci ; 22(18)2021 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-34576180

RESUMEN

A variety of innate immune cells such as macrophages, dendritic cells, myeloid-derived suppressor cells, natural killer cells, and neutrophils in the tumor microenvironments, contribute to tumor progression. However, while several recent reports have studied the use of immune checkpoint-based cancer immunotherapy, little work has focused on modulating the innate immune cells. This review focuses on the recent studies and challenges of using nanoparticles to target innate immune cells. In particular, we also examine the immunosuppressive properties of certain innate immune cells that limit clinical benefits. Understanding the cross-talk between tumors and innate immune cells could contribute to the development of strategies for manipulating the nanoparticles targeting tumor microenvironments.


Asunto(s)
Microambiente Tumoral/fisiología , Animales , Humanos , Inmunidad Innata/genética , Inmunidad Innata/fisiología , Células Supresoras de Origen Mieloide/metabolismo , Nanopartículas/química , Microambiente Tumoral/genética
14.
Cancers (Basel) ; 13(17)2021 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-34503245

RESUMEN

Exosomes are a class of extracellular vesicles, with a size of about 100 nm, secreted by most cells and carrying various bioactive molecules such as nucleic acids, proteins, and lipids, and reflect the biological status of parent cells. Exosomes have natural advantages such as high biocompatibility and low immunogenicity for efficient delivery of therapeutic agents such as chemotherapeutic drugs, nucleic acids, and proteins. In this review, we introduce the latest explorations of exosome-based drug delivery systems for cancer therapy, with particular focus on the targeted delivery of various types of cargoes.

15.
ACS Nano ; 15(7): 11369-11384, 2021 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-34191497

RESUMEN

MicroRNAs (miRNAs), a recently discovered class of noncoding RNAs, play pivotal roles in regulating fundamental biological processes by suppressing the expression of target genes. Aberrant miRNA expression is commonly correlated with human diseases, including cancers. Anti-miRNA oligonucleotides provide an innovative therapeutic strategy for silencing disease-associated miRNAs. However, the clinical application of anti-miRNA therapy has been limited by formulation challenges and physiological delivery barriers. Here, to provide the safe and effective tumor-targeted delivery of anti-miRNAs, we designed carrier-free maleimide-functionalized anti-miRNAs (MI-Anti-miRNAs) that enable "piggybacking" onto albumin in vivo. These functionalized MI-Anti-miRNAs covalently bind to cysteine-34 of endogenous albumin within minutes. In addition to resulting in a markedly extended blood circulation lifetime, this strategy allows MI-Anti-miRNAs to "hitchhike" to the tumor site. Importantly, in situ-generated albumin-Anti-miRNAs are capable of intracellularly internalizing highly negatively charged anti-miRNA molecules and knocking down target miRNAs. In particular, MI-Anti-miRNAs that targeted miRNA-21, which is involved in tumor initiation, progression, invasion, and metastasis in several types of cancer, successfully repressed miRNA-21 activity, resulting in a superior antitumor activity in both solid and metastatic tumor models without causing systemic toxicity. This endogenous albumin-piggybacking approach using MI-Anti-miRNAs provides a simple and broadly applicable platform strategy for the systemic delivery of anti-miRNA therapeutics.


Asunto(s)
MicroARNs , Neoplasias , Humanos , MicroARNs/genética , MicroARNs/metabolismo , Carcinogénesis , Neoplasias/genética , Neoplasias/patología , Oligonucleótidos , Albúminas
16.
Neuropathol Appl Neurobiol ; 47(5): 625-639, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-33345400

RESUMEN

AIMS: Amyloid-ß (Aß) oligomers trigger synaptic degeneration that precedes plaque and tangle pathology. However, the signalling molecules that link Aß oligomers to synaptic pathology remain unclear. Here, we addressed the potential role of RAPGEF2 as a novel signalling molecule in Aß oligomer-induced synaptic and cognitive impairments in human-mutant amyloid precursor protein (APP) mouse models of Alzheimer's disease (AD). METHODS: To investigate the role of RAPGEF2 in Aß oligomer-induced synaptic and cognitive impairments, we utilised a combination of approaches including biochemistry, molecular cell biology, light and electron microscopy, behavioural tests with primary neuron cultures, multiple AD mouse models and post-mortem human AD brain tissue. RESULTS: We found significantly elevated RAPGEF2 levels in the post-mortem human AD hippocampus. RAPGEF2 levels also increased in the transgenic AD mouse models, generating high levels of Aß oligomers before exhibiting synaptic and cognitive impairment. RAPGEF2 upregulation activated the downstream effectors Rap2 and JNK. In cultured hippocampal neurons, oligomeric Aß treatment increased the fluorescence intensity of RAPGEF2 and reduced the number of dendritic spines and the intensities of synaptic marker proteins, while silencing RAPGEF2 expression blocked Aß oligomer-induced synapse loss. Additionally, the in vivo knockdown of RAPGEF2 expression in the AD hippocampus prevented cognitive deficits and the loss of excitatory synapses. CONCLUSIONS: These findings demonstrate that the upregulation of RAPGEF2 levels mediates Aß oligomer-induced synaptic and cognitive disturbances in the AD hippocampus. We propose that an early intervention regarding RAPGEF2 expression may have beneficial effects on early synaptic pathology and memory loss in AD.


Asunto(s)
Enfermedad de Alzheimer/metabolismo , Encéfalo/patología , Disfunción Cognitiva/metabolismo , Factores de Intercambio de Guanina Nucleótido/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Anciano , Anciano de 80 o más Años , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/patología , Péptidos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , Animales , Disfunción Cognitiva/genética , Disfunción Cognitiva/patología , Modelos Animales de Enfermedad , Femenino , Factores de Intercambio de Guanina Nucleótido/genética , Humanos , Masculino , Ratones Transgénicos , Persona de Mediana Edad , Proteínas del Tejido Nervioso/genética , Sinapsis/metabolismo , Sinapsis/patología
17.
Exp Neurobiol ; 28(3): 404-413, 2019 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-31308799

RESUMEN

Cognitive impairments and motor dysfunction are commonly observed behavioral phenotypes in genetic animal models of neurodegenerative diseases. JNPL3 transgenic mice expressing human P301L-mutant tau display motor disturbances with age- and gene dose-dependent development of neurofibrillary tangles, suggesting that tau pathology causes neurodegeneration associated with motor behavioral abnormalities. Although gait ignition failure (GIF), a syndrome marked by difficulty in initiating locomotion, has been described in patients with certain forms of tauopathies, transgenic mouse models mirroring human GIF syndrome have yet to be reported. Using the open field and balance beam tests, here we discovered that JNPL3 homozygous mice exhibit a marked delay of movement initiation. The elevated plus maze excluded the possibility that hesitation to start in JNPL3 mice was caused by enhanced levels of anxiety. Considering the normal gait ignition in rTg4510 mice expressing the same mutant tau in the forebrain, GIF in JNPL3 mice seems to arise from abnormal tau deposition in the hindbrain areas involved in locomotor initiation. Accordingly, immunohistochemistry revealed highly phosphorylated paired helical filament tau in JNPL3 brainstem areas associated with gait initiation. Together, these findings demonstrate a novel behavioral phenotype of impaired gait initiation in JNPL3 mice and underscore the value of this mouse line as a tool to study the neural mechanisms and potential treatments for human GIF syndrome.

18.
Sci Adv ; 5(4): eaav1388, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-31001580

RESUMEN

Detection of amyloid-ß (Aß) aggregates contributes to the diagnosis of Alzheimer disease (AD). Plasma Aß is deemed a less invasive and more accessible hallmark of AD, as Aß can penetrate blood-brain barriers. However, correlations between biofluidic Aß concentrations and AD progression has been tenuous. Here, we introduce a diagnostic technique that compares the heterogeneous and the monomerized states of Aß in plasma. We used a small molecule, EPPS [4-(2-hydroxyethyl)-1-piperazinepropanesulfonic acid], to dissociate aggregated Aß into monomers to enhance quantification accuracy. Subsequently, Aß levels of EPPS-treated plasma were compared to those of untreated samples to minimize inter- and intraindividual variations. The interdigitated microelectrode sensor system was used to measure plasma Aß levels on a scale of 0.1 pg/ml. The implementation of this self-standard blood test resulted in substantial distinctions between patients with AD and individuals with normal cognition (NC), with selectivity and sensitivity over 90%.


Asunto(s)
Péptidos beta-Amiloides/sangre , Imagen por Resonancia Magnética , Tomografía de Emisión de Positrones , Anciano , Enfermedad de Alzheimer/sangre , Enfermedad de Alzheimer/patología , Péptidos beta-Amiloides/química , Animales , Modelos Animales de Enfermedad , Femenino , Humanos , Inmunoensayo/instrumentación , Inmunoensayo/métodos , Dispositivos Laboratorio en un Chip , Límite de Detección , Masculino , Ratones , Ratones Transgénicos , Microelectrodos , Persona de Mediana Edad , Piperazinas/química , Radiofármacos/química
19.
Adv Exp Med Biol ; 975 Pt 1: 225-232, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28849458

RESUMEN

Amyloid-ß (Aß) aggregates are a hallmark of Alzheimer's disease (AD). Through the misfolding process of Aß in the brain, oligomeric forms of Aß accumulate and significantly damage the brain cells inducing neuronal loss and cognitive dysfunctions that lead to AD. We hypothesized that decrease in Aß oligomers during the aggregation process might be able to reduce Aß-dependent brain damage. As taurine-like chemicals are often reported to have direct binding abilities to Aß, we prepared a chemical library that consisted of taurine-carbohydrate derivatives to search for molecules that target Aß and accelerate its fibrillogenesis. Here, we report that 1-deoxy-1-(2-sulfoethylamino)-D-fructose stimulates the formation of relatively less toxic Aß fibrils leading to prevention of cognitive deficits in AD acute model mice.


Asunto(s)
Péptidos beta-Amiloides/efectos de los fármacos , Péptidos beta-Amiloides/metabolismo , Conducta Animal/efectos de los fármacos , Fructosa/farmacología , Taurina/farmacología , Enfermedad de Alzheimer/metabolismo , Animales , Encéfalo/efectos de los fármacos , Encéfalo/metabolismo , Ratones , Ratones Endogámicos ICR
20.
Adv Exp Med Biol ; 975 Pt 1: 233-241, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28849459

RESUMEN

Alzheimer's disease (AD) is the most common cause of dementia leading to severe cognitive decline. During the progression of AD, amyloid-ß (Aß) monomers aggregate into neurotoxic soluble oligomeric Aß that causes cognitive impairments. Our previous study indicates that oral supplementation of taurine at 1000 mg/kg/day significantly ameliorates hippocampal-dependent cognitive deficits in APP/PS1 transgenic AD mouse model. However, Aß plaques and oligomeric Aß levels are not affected after administration of taurine and the oral dosage of taurine was relatively high. Thus, in this study, we focused on direct correlation between taurine and oligomeric Aß, causing memory deficits in a lower oral dosage of taurine, 250 mg/kg/day. We induced AD-like cognitive impairments to adult normal mice and orally administered taurine via drinking water for 10 days. We confirmed that taurine administration improved cognitive deficits in oligomeric Aß-infusion mice in Y-maze and passive avoidance tests without activity alteration of mice. In addition, we found that taurine directly bound to oligomeric Aß in surface plasmon resonance analyses. Our results propose that taurine can ameliorate cognitive impairment by directly binding to oligomeric Aß in oral administration of 250 mg/kg/day for 10 days.


Asunto(s)
Péptidos beta-Amiloides/efectos de los fármacos , Péptidos beta-Amiloides/metabolismo , Cognición/efectos de los fármacos , Taurina/farmacología , Enfermedad de Alzheimer , Animales , Modelos Animales de Enfermedad , Aprendizaje por Laberinto/efectos de los fármacos , Ratones , Ratones Endogámicos C57BL
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...