Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 169
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
J Phys Chem B ; 2024 Sep 24.
Artículo en Inglés | MEDLINE | ID: mdl-39314090

RESUMEN

Cyclin-dependent kinases (CDKs) are activated upon cyclin-binding to enable progression through the cell cycle. Dominant CDKs and cyclins in mammalian cells include CDK1, CDK2, CDK4, and CDK6 and corresponding cyclins A, B, D, and E. While only certain, "typical" cyclin/CDK complexes are primarily responsible for cell cycle progression, "atypical" cyclin/CDK complexes can form and sometimes perform the same roles as typical complexes. We asked what structural features of cyclins and CDKs favor the formation of typical complexes, a vital yet not fully explored question. We use computational docking and biophysical analyses to exhaustively evaluate the structure and stability of all CDK and cyclin complexes listed above. We find that binding of the complexes is generally stronger for typical than for atypical complexes, especially when the CDK is in an active conformation. Typical complexes have denser clusters, indicating that they have more defined cyclin-binding sites than atypical complexes. Our results help explain three notable features of cyclin/CDK function in the cell cycle: (i) why CDK4 and cyclin-D have exceptionally high specificity for each other; (ii) why both cyclin-A and cyclin-B strongly activate CDK1, whereas CDK2 is only strongly activated by cyclin-A; and (iii) why cyclin-E normally activates CDK2 but not CDK1. Overall, this work reveals the binding modalities of cyclin/CDK complexes, how the modalities lead to the preference for typical complexes versus atypical complexes, and how binding modalities differ between typical complexes. Our observations suggest targeting CDK catalytic actions through destabilizing their native differential cyclin interfaces.

2.
Nat Commun ; 15(1): 7176, 2024 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-39169042

RESUMEN

RHOA mutations are found at diverse residues in various cancer types, implying mutation- and cell-specific mechanisms of tumorigenesis. Here, we focus on the underlying mechanisms of two gain-of-function RHOA mutations, A161P and A161V, identified in adult T-cell leukemia/lymphoma. We find that RHOAA161P and RHOAA161V are both fast-cycling mutants with increased guanine nucleotide dissociation/association rates compared with RHOAWT and show reduced GTP-hydrolysis activity. Crystal structures reveal an altered nucleotide association in RHOAA161P and an open nucleotide pocket in RHOAA161V. Both mutations perturb the dynamic properties of RHOA switch regions and shift the conformational landscape important for RHOA activity, as shown by 31P NMR and molecular dynamics simulations. Interestingly, RHOAA161P and RHOAA161V can interact with effectors in the GDP-bound state. 1H-15N HSQC NMR spectra support the existence of an active population in RHOAA161V-GDP. The distinct interaction mechanisms resulting from the mutations likely favor an RHOAWT-like "ON" conformation, endowing GDP-bound state effector binding activity.


Asunto(s)
Guanosina Difosfato , Simulación de Dinámica Molecular , Proteína de Unión al GTP rhoA , Proteína de Unión al GTP rhoA/metabolismo , Proteína de Unión al GTP rhoA/genética , Guanosina Difosfato/metabolismo , Humanos , Mutación , Cristalografía por Rayos X , Unión Proteica , Guanosina Trifosfato/metabolismo , Conformación Proteica , Mutación con Ganancia de Función
3.
Expert Opin Drug Discov ; 19(9): 1071-1085, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39068599

RESUMEN

INTRODUCTION: Allosteric drugs are advantageous. However, they still face hurdles, including identification of allosteric sites that will effectively alter the active site. Current strategies largely focus on identifying pockets away from the active sites into which the allosteric ligand will dock and do not account for exactly how the active site is altered. Favorable allosteric inhibitors dock into sites that are nearby the active sites and follow nature, mimicking diverse allosteric regulation strategies. AREAS COVERED: The following article underscores the immense significance of allostery in drug design, describes current allosteric strategies, and especially offers a direction going forward. The article concludes with the authors' expert perspectives on the subject. EXPERT OPINION: To select a productive venue in allosteric inhibitor development, we should learn from nature. Currently, useful strategies follow this route. Consider, for example, the mechanisms exploited in relieving autoinhibition and in harnessing allosteric degraders. Mimicking compensatory, or rescue mutations may also fall into such a thesis, as can molecular glues that capture features of scaffolding proteins. Capturing nature and creatively tailoring its mimicry can continue to innovate allosteric drug discovery.


Asunto(s)
Sitio Alostérico , Antineoplásicos , Diseño de Fármacos , Neoplasias , Regulación Alostérica/efectos de los fármacos , Humanos , Antineoplásicos/farmacología , Neoplasias/tratamiento farmacológico , Ligandos , Desarrollo de Medicamentos , Descubrimiento de Drogas/métodos , Proteínas/metabolismo , Animales , Dominio Catalítico
4.
Front Cell Dev Biol ; 12: 1376639, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39015651

RESUMEN

The connection and causality between cancer and neurodevelopmental disorders have been puzzling. How can the same cellular pathways, proteins, and mutations lead to pathologies with vastly different clinical presentations? And why do individuals with neurodevelopmental disorders, such as autism and schizophrenia, face higher chances of cancer emerging throughout their lifetime? Our broad review emphasizes the multi-scale aspect of this type of reasoning. As these examples demonstrate, rather than focusing on a specific organ system or disease, we aim at the new understanding that can be gained. Within this framework, our review calls attention to computational strategies which can be powerful in discovering connections, causalities, predicting clinical outcomes, and are vital for drug discovery. Thus, rather than centering on the clinical features, we draw on the rapidly increasing data on the molecular level, including mutations, isoforms, three-dimensional structures, and expression levels of the respective disease-associated genes. Their integrated analysis, together with chromatin states, can delineate how, despite being connected, neurodevelopmental disorders and cancer differ, and how the same mutations can lead to different clinical symptoms. Here, we seek to uncover the emerging connection between cancer, including pediatric tumors, and neurodevelopmental disorders, and the tantalizing questions that this connection raises.

5.
Sci Adv ; 10(27): eadm9211, 2024 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-38968359

RESUMEN

Decades ago, mitogen-promoted signaling duration and strength were observed to be sensed by the cell and to be critical for its decisions: to proliferate or differentiate. Landmark publications established the importance of mitogen signaling not only in the G1 cell cycle phase but also through the S and the G2/M transition. Despite these early milestones, how mitogen signal duration and strength, short and strong or weaker and sustained, control cell fate has been largely unheeded. Here, we center on cardinal signaling-related questions, including (i) how fluctuating mitogenic signals are converted into cell proliferation-differentiation decisions and (ii) why extended duration of weak signaling is associated with differentiation, while bursts of strong and short induce proliferation but, if too strong and long, induce irreversible senescence. Our innovative broad outlook harnesses cell biology and protein conformational ensembles, helping us to define signaling strength, clarify cell cycle decisions, and thus cell fate.


Asunto(s)
Ciclo Celular , Diferenciación Celular , Transducción de Señal , Humanos , Animales , Mitógenos/metabolismo , Proliferación Celular
6.
Neurobiol Dis ; 199: 106597, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38992777

RESUMEN

Pediatric low grade brain tumors and neurodevelopmental disorders share proteins, signaling pathways, and networks. They also share germline mutations and an impaired prenatal differentiation origin. They may differ in the timing of the events and proliferation. We suggest that their pivotal distinct, albeit partially overlapping, outcomes relate to the cell states, which depend on their spatial location, and timing of gene expression during brain development. These attributes are crucial as the brain develops sequentially, and single-cell spatial organization influences cell state, thus function. Our underlying premise is that the root cause in neurodevelopmental disorders and pediatric tumors is impaired prenatal differentiation. Data related to pediatric brain tumors, neurodevelopmental disorders, brain cell (sub)types, locations, and timing of expression in the developing brain are scant. However, emerging single cell technologies, including transcriptomic, spatial biology, spatial high-resolution imaging performed over the brain developmental time, could be transformational in deciphering brain pathologies thereby pharmacology.


Asunto(s)
Encéfalo , Análisis de la Célula Individual , Humanos , Encéfalo/crecimiento & desarrollo , Encéfalo/patología , Encéfalo/metabolismo , Niño , Trastornos del Neurodesarrollo/patología , Trastornos del Neurodesarrollo/genética , Trastornos del Neurodesarrollo/metabolismo , Neoplasias Encefálicas/patología , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo , Animales
7.
EMBO J ; 43(14): 2862-2877, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38858602

RESUMEN

The RAS pathway is among the most frequently activated signaling nodes in cancer. However, the mechanisms that alter RAS activity in human pathologies are not entirely understood. The most prevalent post-translational modification within the GTPase core domain of NRAS and KRAS is ubiquitination at lysine 128 (K128), which is significantly decreased in cancer samples compared to normal tissue. Here, we found that K128 ubiquitination creates an additional binding interface for RAS GTPase-activating proteins (GAPs), NF1 and RASA1, thus increasing RAS binding to GAP proteins and promoting GAP-mediated GTP hydrolysis. Stimulation of cultured cancer cells with growth factors or cytokines transiently induces K128 ubiquitination and restricts the extent of wild-type RAS activation in a GAP-dependent manner. In KRAS mutant cells, K128 ubiquitination limits tumor growth by restricting RAL/ TBK1 signaling and negatively regulating the autocrine circuit induced by mutant KRAS. Reduction of K128 ubiquitination activates both wild-type and mutant RAS signaling and elicits a senescence-associated secretory phenotype, promoting RAS-driven pancreatic tumorigenesis.


Asunto(s)
Unión Proteica , Proteínas Proto-Oncogénicas p21(ras) , Ubiquitinación , Humanos , Proteínas Proto-Oncogénicas p21(ras)/metabolismo , Proteínas Proto-Oncogénicas p21(ras)/genética , Transducción de Señal , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Animales , Proteína Activadora de GTPasa p120/metabolismo , Proteína Activadora de GTPasa p120/genética , Ratones , Línea Celular Tumoral , GTP Fosfohidrolasas/metabolismo , GTP Fosfohidrolasas/genética , Lisina/metabolismo , Proteínas de la Membrana/metabolismo , Proteínas de la Membrana/genética , Proteínas ras/metabolismo , Proteínas ras/genética , Neurofibromina 1
8.
Structure ; 32(8): 1269-1280.e2, 2024 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-38703777

RESUMEN

Dysregulation of cyclin-dependent kinases (CDKs) impacts cell proliferation, driving cancer. Here, we ask why the cyclin-D/CDK4 complex governs cell cycle progression through the longer G1 phase, whereas cyclin-E/CDK2 regulates the shorter G1/S phase transition. We consider available experimental cellular and structural data including cyclin-E's high-level burst, sustained duration of elevated cyclin-D expression, and explicit solvent molecular dynamics simulations of the inactive monomeric and complexed states, to establish the conformational tendencies along the landscape of the distinct activation scenarios of cyclin-D/CDK4 and cyclin-E/CDK2 in the G1 phase and G1/S transition of the cell cycle, respectively. These lead us to propose slower activation of cyclin-D/CDK4 and rapid activation of cyclin-E/CDK2. We provide the mechanisms through which this occurs, offering innovative CDK4 drug design considerations. Our insightful mechanistic work addresses a compelling cell cycle regulation question and illuminates the distinct activation speeds between the G1 and the G1/S phases, which are crucial for function.


Asunto(s)
Ciclo Celular , Quinasa 2 Dependiente de la Ciclina , Quinasa 4 Dependiente de la Ciclina , Simulación de Dinámica Molecular , Quinasa 2 Dependiente de la Ciclina/metabolismo , Quinasa 2 Dependiente de la Ciclina/química , Quinasa 2 Dependiente de la Ciclina/genética , Quinasa 4 Dependiente de la Ciclina/metabolismo , Quinasa 4 Dependiente de la Ciclina/química , Humanos , Unión Proteica , Ciclina E/metabolismo , Ciclina E/química , Ciclina E/genética , Ciclina D/metabolismo , Ciclina D/química , Ciclina D/genética , Sitios de Unión , Activación Enzimática
9.
J Phys Chem B ; 128(21): 5175-5187, 2024 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-38747619

RESUMEN

SHP2 is a positive regulator of the EGFR-dependent Ras/MAPK pathway. It dephosphorylates a regulatory phosphorylation site in EGFR that serves as the binding site to RasGAP (RASA1 or p120RasGAP). RASA1 is activated by binding to the EGFR phosphate group. Active RASA1 deactivates Ras by hydrolyzing Ras-bound GTP to GDP. Thus, SHP2 dephosphorylation of EGFR effectively prevents RASA1-mediated deactivation of Ras, thereby stimulating proliferation. Despite knowledge of this vital regulation in cell life, mechanistic in-depth structural understanding of the involvement of SHP2, EGFR, and RASA1 in the Ras/MAPK pathway has largely remained elusive. Here we elucidate the interactions, the factors influencing EGFR's recruitment of RASA1, and SHP2's recognition of the substrate site in EGFR. We reveal that RASA1 specifically interacts with the DEpY992LIP motif in EGFR featuring a proline residue at the +3 position C-terminal to pY primarily through its nSH2 domain. This interaction is strengthened by the robust attraction of two acidic residues, E991 and D990, of EGFR to two basic residues in the BC-loop near the pY-binding pocket of RASA1's nSH2. In the stable precatalytic state of SHP2 with EGFR (DADEpY992LIPQ), the E-loop of SHP2's active site favors the interaction with the (-2)-position D990 and (-4)-position D988 N-terminal to pY992 in EGFR, while the pY-loop constrains the (+4)-position Q996 C-terminal to pY992. These specific interactions not only provide a structural basis for identifying negative regulatory sites in other RTKs but can inform selective, high-affinity active-site SHP2 inhibitors tailored for SHP2 mutants.


Asunto(s)
Receptores ErbB , Proteína Tirosina Fosfatasa no Receptora Tipo 11 , Proteína Activadora de GTPasa p120 , Proteína Tirosina Fosfatasa no Receptora Tipo 11/metabolismo , Proteína Tirosina Fosfatasa no Receptora Tipo 11/antagonistas & inhibidores , Proteína Tirosina Fosfatasa no Receptora Tipo 11/química , Receptores ErbB/metabolismo , Receptores ErbB/antagonistas & inhibidores , Receptores ErbB/química , Humanos , Fosforilación , Proteína Activadora de GTPasa p120/metabolismo , Proteína Activadora de GTPasa p120/química , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/farmacología , Inhibidores Enzimáticos/metabolismo , Unión Proteica , Sitios de Unión
10.
Trends Pharmacol Sci ; 45(6): 503-519, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38782689

RESUMEN

Small molecules are at the forefront of anticancer therapies. Successive treatments with single molecules incur drug resistance, calling for combination. Here, we explore the tough choices oncologists face - not just which drugs to use but also the best treatment plans, based on factors such as target proteins, pathways, and gene expression. We consider the reality of cancer's disruption of normal cellular processes, highlighting why it's crucial to understand the ins and outs of current treatment methods. The discussion on using combination drug therapies to target multiple pathways sheds light on a promising approach while also acknowledging the hurdles that come with it, such as dealing with pathway crosstalk. We review options and provide examples and the mechanistic basis, altogether providing the first comprehensive guide to combinatorial therapy selection.


Asunto(s)
Antineoplásicos , Neoplasias , Humanos , Neoplasias/tratamiento farmacológico , Antineoplásicos/farmacología , Protocolos de Quimioterapia Combinada Antineoplásica/farmacología , Animales , Bibliotecas de Moléculas Pequeñas/farmacología , Resistencia a Antineoplásicos
11.
JACS Au ; 4(5): 1911-1927, 2024 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-38818077

RESUMEN

Cyclin-dependent kinases (CDKs), particularly CDK4 and CDK2, are crucial for cell cycle progression from the Gap 1 (G1) to the Synthesis (S) phase by phosphorylating targets such as the Retinoblastoma Protein (Rb). CDK4, paired with cyclin-D, operates in the long G1 phase, while CDK2 with cyclin-E, manages the brief G1-to-S transition, enabling DNA replication. Aberrant CDK signaling leads to uncontrolled cell proliferation, which is a hallmark of cancer. Exactly how they accomplish their catalytic phosphorylation actions with distinct efficiencies poses the fundamental, albeit overlooked question. Here we combined available experimental data and modeling of the active complexes to establish their conformational functional landscapes to explain how the two cyclin/CDK complexes differentially populate their catalytically competent states for cell cycle progression. Our premise is that CDK catalytic efficiencies could be more important for cell cycle progression than the cyclin-CDK biochemical binding specificity and that efficiency is likely the prime determinant of cell cycle progression. We observe that CDK4 is more dynamic than CDK2 in the ATP binding site, the regulatory spine, and the interaction with its cyclin partner. The N-terminus of cyclin-D acts as an allosteric regulator of the activation loop and the ATP-binding site in CDK4. Integrated with a suite of experimental data, we suggest that the CDK4 complex is less capable of remaining in the active catalytically competent conformation, and may have a lower catalytic efficiency than CDK2, befitting their cell cycle time scales, and point to critical residues and motifs that drive their differences. Our mechanistic landscape may apply broadly to kinases, and we propose two drug design strategies: (i) allosteric Inhibition by conformational stabilization for targeting allosteric CDK4 regulation by cyclin-D, and (ii) dynamic entropy-optimized targeting which leverages the dynamic, entropic aspects of CDK4 to optimize drug binding efficacy.

12.
Protein Sci ; 33(5): e4982, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38591710

RESUMEN

KSR1, a key scaffold protein for the MAPK pathway, facilitates ERK activation upon growth factor stimulation. We recently demonstrated that KSR1 binds the Ca2+-binding protein calmodulin (CaM), thereby providing an intersection between KSR1-mediated and Ca2+ signaling. In this study, we set out to generate a KSR1 point mutant with reduced Ca2+/CaM binding in order to unravel the functional implications of their interaction. To do so, we solved the structural determinants of complex formation. Using purified fragments of KSR1, we showed that Ca2+/CaM binds to the CA3 domain of KSR1. We then used in silico molecular modeling to predict contact residues for binding. This approach identified two possible modes of interaction: (1) binding of extended Ca2+/CaM to a globular conformation of KSR1-CA3 via electrostatic interactions or (2) binding of collapsed Ca2+/CaM to α-helical KSR1-CA3 via hydrophobic interactions. Experimentally, site-directed mutagenesis of the predicted contact residues for the two binding models favored that where collapsed Ca2+/CaM binds to the α-helical conformation of KSR1-CA3. Importantly, replacing KSR1-Phe355 with Asp reduces Ca2+/CaM binding by 76%. The KSR1-F355D mutation also significantly impairs the ability of EGF to activate ERK, which reveals that Ca2+/CaM binding promotes KSR1-mediated MAPK signaling. This work, by uncovering structural insight into the binding of KSR1 to Ca2+/CaM, identifies a KSR1 single-point mutant as a bioreagent to selectively study the crosstalk between Ca2+ and KSR1-mediated signaling.


Asunto(s)
Señalización del Calcio , Calmodulina , Calmodulina/química , Unión Proteica , Mutación , Mutagénesis Sitio-Dirigida , Calcio/metabolismo
13.
J Chem Inf Model ; 64(3): 862-873, 2024 02 12.
Artículo en Inglés | MEDLINE | ID: mdl-38215280

RESUMEN

The Ras homologue family member A (RhoA) is a member of the Rho family, a subgroup of the Ras superfamily. RhoA interacts with the 115 kDa guanine nucleotide exchange factor (p115-RhoGEF), which assists in activation and binding with downstream effectors. Here, we use molecular dynamics (MD) simulations and essential dynamics analysis of the inactive RhoA-GDP and active RhoA-GTP, when bound to p115-RhoGEF to decipher the mechanism of RhoA activation at the structural level. We observe that inactive RhoA-GDP maintains its position near the catalytic site on the Dbl homology (DH) domain of p115-RhoGEF through the interaction of its Switch I region with the DH domain. We further show that the active RhoA-GTP is engaged in more interactions with the p115-RhoGEF membrane-bound Pleckstrin homology (PH) domain as compared to RhoA-GDP. We hypothesize that the role of the interactions between the active RhoA-GTP and the PH domain is to help release it from the DH domain upon activation. Our results support this premise, and our simulations uncover the beginning of this process and provide structural details. They also point to allosteric communication pathways that take part in RhoA activation to promote and strengthen the interaction between the active RhoA-GTP and the PH domain. Allosteric regulation also occurs among other members of the Rho superfamily. Collectively, we suggest that in the activation process, the role of the RhoA-GTP interaction with the PH domain is to release RhoA-GTP from the DH domain after activation, making it available to downstream effectors.


Asunto(s)
Simulación de Dinámica Molecular , Regulación Alostérica , Factores de Intercambio de Guanina Nucleótido Rho , Dominios Proteicos , Guanosina Trifosfato/metabolismo
14.
Chem Sci ; 15(3): 1003-1017, 2024 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-38239681

RESUMEN

mTOR serine/threonine kinase is a cornerstone in the PI3K/AKT/mTOR pathway. Yet, the detailed mechanism of activation of its catalytic core is still unresolved, likely due to mTOR complexes' complexity. Its dysregulation was implicated in cancer and neurodevelopmental disorders. Using extensive molecular dynamics (MD) simulations and compiled published experimental data, we determine exactly how mTOR's inherent motifs can control the conformational changes in the kinase domain, thus kinase activity. We also chronicle the critical regulation by the unstructured negative regulator domain (NRD). When positioned inside the catalytic cleft (NRD IN state), mTOR tends to adopt a deep and closed catalytic cleft. This is primarily due to the direct interaction with the FKBP-rapamycin binding (FRB) domain which restricts it, preventing substrate access. Conversely, when outside the catalytic cleft (NRD OUT state), mTOR favors an open conformation, exposing the substrate-binding site on the FRB domain. We further show how an oncogenic mutation (L2427R) promotes shifting the mTOR ensemble toward the catalysis-favored state. Collectively, we extend mTOR's "active-site restriction" mechanism and clarify mutation action. In particular, our mechanism suggests that RMC-5552 (RMC-6272) bitopic inhibitors may benefit from adjustment of the (PEG8) linker length when targeting certain mTOR variants. In the cryo-EM mTOR/RMC-5552 structure, the distance between the allosteric and orthosteric inhibitors is ∼22.7 Å. With a closed catalytic cleft, this linker bridges the sites. However, in our activation mechanism, in the open cleft it expands to ∼24.7 Å, offering what we believe to be the first direct example of how discovering an activation mechanism can potentially increase the affinity of inhibitors targeting mutants.

15.
Annu Rev Pharmacol Toxicol ; 64: 231-253, 2024 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-37524384

RESUMEN

Here we discuss approaches to K-Ras inhibition and drug resistance scenarios. A breakthrough offered a covalent drug against K-RasG12C. Subsequent innovations harnessed same-allele drug combinations, as well as cotargeting K-RasG12C with a companion drug to upstream regulators or downstream kinases. However, primary, adaptive, and acquired resistance inevitably emerge. The preexisting mutation load can explain how even exceedingly rare mutations with unobservable effects can promote drug resistance, seeding growth of insensitive cell clones, and proliferation. Statistics confirm the expectation that most resistance-related mutations are in cis, pointing to the high probability of cooperative, same-allele effects. In addition to targeted Ras inhibitors and drug combinations, bifunctional molecules and innovative tri-complex inhibitors to target Ras mutants are also under development. Since the identities and potential contributions of preexisting and evolving mutations are unknown, selecting a pharmacologic combination is taxing. Collectively, our broad review outlines considerations and provides new insights into pharmacology and resistance.


Asunto(s)
Antineoplásicos , Neoplasias , Humanos , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Neoplasias/tratamiento farmacológico , Paclitaxel , Alelos , Combinación de Medicamentos
16.
Biophys J ; 123(1): 57-67, 2024 01 02.
Artículo en Inglés | MEDLINE | ID: mdl-37978802

RESUMEN

Rho-specific guanine nucleotide dissociation inhibitors (RhoGDIs) play a crucial role in the regulation of Rho family GTPases. They act as negative regulators that prevent the activation of Rho GTPases by forming complexes with the inactive GDP-bound state of GTPase. Release of Rho GTPase from the RhoGDI-bound complex is necessary for Rho GTPase activation. Biochemical studies provide evidence of a "phosphorylation code," where phosphorylation of some specific residues of RhoGDI selectively releases its GTPase partner (RhoA, Rac1, Cdc42, etc.). This work attempts to understand the molecular mechanism behind this specific phosphorylation-induced reduction in binding affinity. Using several microseconds long atomistic molecular dynamics simulations of the wild-type and phosphorylated states of the RhoA-RhoGDI complex, we propose a molecular-interaction-based mechanistic model for the dissociation of the complex. Phosphorylation induces major structural changes, particularly in the positively charged polybasic region (PBR) of RhoA and the negatively charged N-terminal region of RhoGDI that contribute most to the binding affinity. Molecular mechanics Poisson-Boltzmann surface area binding energy calculations show a significant weakening of interaction on phosphorylation at the RhoA-specific site of RhoGDI. In contrast, phosphorylation at a Rac1-specific site does not affect the overall binding affinity significantly, which confirms the presence of a phosphorylation code. RhoA-specific phosphorylation leads to a reduction in the number of contacts between the PBR of RhoA and the N-terminal region of RhoGDI, which manifests a reduction of the binding affinity. Using hydrogen bond occupancy analysis and energetic perturbation network, we propose a mechanistic model for the allosteric response, i.e., long-range signal propagation from the site of phosphorylation to the PBR and buried geranylgeranyl group in the form of rearrangement and rewiring of hydrogen bonds and salt bridges. Our results highlight the crucial role of specific electrostatic interactions in manifestation of the phosphorylation code.


Asunto(s)
Inhibidores de Disociación de Guanina Nucleótido , Inhibidor alfa de Disociación del Nucleótido Guanina rho , Inhibidores de la Disociación del Nucleótido Guanina rho-Específico/metabolismo , Fosforilación , Inhibidores de Disociación de Guanina Nucleótido/química , Inhibidores de Disociación de Guanina Nucleótido/metabolismo , Inhibidor alfa de Disociación del Nucleótido Guanina rho/metabolismo , Unión Proteica , Proteína de Unión al GTP rhoA/metabolismo , Proteínas de Unión al GTP rho/metabolismo
17.
Cell Mol Life Sci ; 81(1): 5, 2023 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-38085330

RESUMEN

SHP2 phosphatase promotes full activation of the RTK-dependent Ras/MAPK pathway. Its mutations can drive cancer and RASopathies, a group of neurodevelopmental disorders (NDDs). Here we ask how same residue mutations in SHP2 can lead to both cancer and NDD phenotypes, and whether we can predict what the outcome will be. We collected and analyzed mutation data from the literature and cancer databases and performed molecular dynamics simulations of SHP2 mutants. We show that both cancer and Noonan syndrome (NS, a RASopathy) mutations favor catalysis-prone conformations. As to cancer versus RASopathies, we demonstrate that cancer mutations are more likely to accelerate SHP2 activation than the NS mutations at the same genomic loci, in line with NMR data for K-Ras4B more aggressive mutations. The compiled experimental data and dynamic features of SHP2 mutants lead us to propose that different from strong oncogenic mutations, SHP2 activation by NS mutations is less likely to induce a transition of the ensemble from the SHP2 inactive state to the active state. Strong signaling promotes cell proliferation, a hallmark of cancer. Weak, or moderate signals are associated with differentiation. In embryonic neural cells, dysregulated differentiation is connected to NDDs. Our innovative work offers structural guidelines for identifying and correlating mutations with clinical outcomes, and an explanation for why bearers of RASopathy mutations may have a higher probability of cancer. Finally, we propose a drug strategy against SHP2 variants-promoting cancer and RASopathies.


Asunto(s)
Neoplasias , Síndrome de Noonan , Humanos , Proteína Tirosina Fosfatasa no Receptora Tipo 11/genética , Proteína Tirosina Fosfatasa no Receptora Tipo 11/metabolismo , Síndrome de Noonan/genética , Mutación/genética , Neoplasias/genética , Dominios Homologos src/genética , Fenotipo
18.
RSC Chem Biol ; 4(11): 850-864, 2023 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-37920394

RESUMEN

The sequence-structure-function paradigm has dominated twentieth century molecular biology. The paradigm tacitly stipulated that for each sequence there exists a single, well-organized protein structure. Yet, to sustain cell life, function requires (i) that there be more than a single structure, (ii) that there be switching between the structures, and (iii) that the structures be incompletely organized. These fundamental tenets called for an updated sequence-conformational ensemble-function paradigm. The powerful energy landscape idea, which is the foundation of modernized molecular biology, imported the conformational ensemble framework from physics and chemistry. This framework embraces the recognition that proteins are dynamic and are always interconverting between conformational states with varying energies. The more stable the conformation the more populated it is. The changes in the populations of the states are required for cell life. As an example, in vivo, under physiological conditions, wild type kinases commonly populate their more stable "closed", inactive, conformations. However, there are minor populations of the "open", ligand-free states. Upon their stabilization, e.g., by high affinity interactions or mutations, their ensembles shift to occupy the active states. Here we discuss the role of conformational propensities in function. We provide multiple examples of diverse systems, including protein kinases, lipid kinases, and Ras GTPases, discuss diverse conformational mechanisms, and provide a broad outlook on protein ensembles in the cell. We propose that the number of molecules in the active state (inactive for repressors), determine protein function, and that the dynamic, relative conformational propensities, rather than the rigid structures, are the hallmark of cell life.

19.
Adv Sci (Weinh) ; 10(36): e2303367, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37946677

RESUMEN

Blood flow produces shear stress exerted on the endothelial layer of the vessels. Spatial characterization of the endothelial proteome is required to uncover the mechanisms of endothelial activation by shear stress, as blood flow varies in the vasculature. An integrative ubiquitinome and proteome analysis of shear-stressed endothelial cells demonstrated that the non-degradative ubiquitination of several GTPases is regulated by mechano-signaling. Spatial analysis reveals increased ubiquitination of the small GTPase RAP1 in the descending aorta, a region exposed to laminar shear stress. The ubiquitin ligase WWP2 is identified as a novel regulator of RAP1 ubiquitination during shear stress response. Non-degradative ubiquitination fine-tunes the function of GTPases by modifying their interacting network. Specifically, WWP2-mediated RAP1 ubiquitination at lysine 31 switches the balance from the RAP1/ Talin 1 (TLN1) toward RAP1/ Afadin (AFDN) or RAP1/ RAS Interacting Protein 1 (RASIP1) complex formation, which is essential to suppress shear stress-induced reactive oxygen species (ROS) production and maintain endothelial barrier integrity. Increased ROS production in endothelial cells in the descending aorta of endothelial-specific Wwp2-knockout mice leads to increased levels of oxidized lipids and inflammation. These results highlight the importance of the spatially regulated non-degradative ubiquitination of GTPases in endothelial mechano-activation.


Asunto(s)
Células Endoteliales , GTP Fosfohidrolasas , Animales , Ratones , Células Endoteliales/metabolismo , GTP Fosfohidrolasas/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Proteoma/metabolismo , Proteínas de Unión al GTP rap1/genética , Proteínas de Unión al GTP rap1/metabolismo , Ratones Noqueados , Ubiquitinación
20.
NPJ Genom Med ; 8(1): 37, 2023 Nov 04.
Artículo en Inglés | MEDLINE | ID: mdl-37925498

RESUMEN

Epidemiological studies suggest that individuals with neurodevelopmental disorders (NDDs) are more prone to develop certain types of cancer. Notably, however, the case statistics can be impacted by late discovery of cancer in individuals afflicted with NDDs, such as intellectual disorders, autism, and schizophrenia, which may bias the numbers. As to NDD-associated mutations, in most cases, they are germline while cancer mutations are sporadic, emerging during life. However, somatic mosaicism can spur NDDs, and cancer-related mutations can be germline. NDDs and cancer share proteins, pathways, and mutations. Here we ask (i) exactly which features they share, and (ii) how, despite their commonalities, they differ in clinical outcomes. To tackle these questions, we employed a statistical framework followed by network analysis. Our thorough exploration of the mutations, reconstructed disease-specific networks, pathways, and transcriptome levels and profiles of autism spectrum disorder (ASD) and cancers, point to signaling strength as the key factor: strong signaling promotes cell proliferation in cancer, and weaker (moderate) signaling impacts differentiation in ASD. Thus, we suggest that signaling strength, not activating mutations, can decide clinical outcome.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...