Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
J Chemother ; : 1-18, 2023 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-38054850

RESUMEN

This study investigated the potential of a newly synthesized histone deacetylase (HDAC) inhibitor, MHY446, in inducing cell death in HCT116 colorectal cancer cells and compared its activity with that of suberoylanilide hydroxamic acid (SAHA), a well-known HDAC inhibitor. The results showed that MHY446 increased the acetylation of histones H3 and H4 and decreased the expression and activity of HDAC proteins in HCT116 cells. Additionally, MHY446 was confirmed to bind more strongly to HDAC1 than HDAC2 and inhibit its activity. In vivo experiments using nude mice revealed that MHY446 was as effective as SAHA in inhibiting HCT116 cell-grafted tumor growth. This study also evaluated the biological effects of MHY446 on cell survival and death pathways. The reactive oxygen species (ROS) scavenger N-acetyl-L-cysteine (NAC) confirmed that ROS play a role in MHY446-induced cell death by reducing poly(ADP-ribose) polymerase cleavage. MHY446 also induced cell death via endoplasmic reticulum (ER) stress by increasing the expression of ER stress-related proteins. NAC treatment decreased the expression of ER stress-related proteins, indicating that ROS mediate ER stress as an upstream signaling pathway and induce cell death. While MHY446 did not exhibit superior HDAC inhibition efficacy compared to SAHA, it is anticipated to provide innovative insights into the future development of therapeutic agents for human CRC by offering novel chemical structure-activity relationship-related information.

2.
Biomedicines ; 11(6)2023 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-37371730

RESUMEN

Sarcopenia refers to the loss of muscle strength and mass in older individuals and is a major determinant of fall risk and impaired ability to perform activities of daily living, often leading to disability, loss of independence, and death. Owing to its impact on morbidity, mortality, and healthcare expenditure, sarcopenia in the elderly has become a major focus of research and public policy debates worldwide. Despite its clinical importance, sarcopenia remains under-recognized and poorly managed in routine clinical practice, partly owing to the lack of available diagnostic testing and uniform diagnostic criteria. Since the World Health Organization and the United States assigned a disease code for sarcopenia in 2016, countries worldwide have assigned their own disease codes for sarcopenia. However, there are currently no approved pharmacological agents for the treatment of sarcopenia; therefore, interventions for sarcopenia primarily focus on physical therapy for muscle strengthening and gait training as well as adequate protein intake. In this review, we aimed to examine the latest information on the epidemiology, molecular mechanisms, interventions, and possible treatments with new drugs for sarcopenia.

3.
Int J Mol Sci ; 24(9)2023 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-37176164

RESUMEN

DNA topoisomerases are important enzymes that stabilize DNA supercoiling and resolve entanglements. There are two main types of topoisomerases in all cells: type I, which causes single-stranded DNA breaks, and type II, which cuts double-stranded DNA. Topoisomerase activity is particularly increased in rapidly dividing cells, such as cancer cells. Topoisomerase inhibitors have been an effective chemotherapeutic option for the treatment of several cancers. In addition, combination cancer therapy with topoisomerase inhibitors may increase therapeutic efficacy and decrease resistance or side effects. Topoisomerase inhibitors are currently being used worldwide, including in the United States, and clinical trials on the combination of topoisomerase inhibitors with other drugs are currently underway. The primary objective of this review was to comprehensively analyze the current clinical landscape concerning the combined application of irinotecan, an extensively investigated type I topoisomerase inhibitor for colorectal cancer, and doxorubicin, an extensively researched type II topoisomerase inhibitor for breast cancer, while presenting a novel approach for cancer therapy.


Asunto(s)
Neoplasias de la Mama , Neoplasias Colorrectales , Humanos , Femenino , Inhibidores de Topoisomerasa I/farmacología , Inhibidores de Topoisomerasa I/uso terapéutico , Neoplasias de la Mama/tratamiento farmacológico , Inhibidores de Topoisomerasa II/farmacología , Inhibidores de Topoisomerasa II/uso terapéutico , Quimioterapia Combinada , Neoplasias Colorrectales/tratamiento farmacológico , ADN-Topoisomerasas de Tipo II/metabolismo , ADN-Topoisomerasas de Tipo I/metabolismo
4.
Int J Mol Sci ; 24(3)2023 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-36768278

RESUMEN

Scutellaria baicalensis Georgi (SBG), an herbal medicine with various biological activities, including anti-inflammatory, anticancer, antiviral, antibacterial, and antioxidant activities, is effective in treatment of colitis, hepatitis, pneumonia, respiratory infections, and allergic diseases. This herbal medicine consists of major active substances, such as baicalin, baicalein, wogonoside, and wogonin. Inflammatory bowel disease (IBD) comprises a group of inflammatory conditions of the colon and small intestine, with Crohn's disease and ulcerative colitis being the main types. IBD can lead to serious complications, such as increased risk of colorectal cancer (CRC), one of the most common cancers worldwide. Currently, there is no cure for IBD, and its incidence has been increasing over the past few decades. This review comprehensively summarizes the efficacy of SBG in IBD and CRC and may serve as a reference for future research and development of drugs for IBD and cancer treatment.


Asunto(s)
Neoplasias Colorrectales , Enfermedades Inflamatorias del Intestino , Plantas Medicinales , Humanos , Scutellaria baicalensis , Extractos Vegetales/farmacología , Extractos Vegetales/uso terapéutico , Flavonoides , Enfermedades Inflamatorias del Intestino/complicaciones , Enfermedades Inflamatorias del Intestino/tratamiento farmacológico , Neoplasias Colorrectales/tratamiento farmacológico
5.
Biomol Ther (Seoul) ; 31(1): 73-81, 2023 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-35811306

RESUMEN

Sirtuins (SIRTs) belong to the nicotinamide adenine dinucleotide (NAD+)-dependent class III histone deacetylase family. They are key regulators of cellular and physiological processes, such as cell survival, senescence, differentiation, DNA damage and stress response, cellular metabolism, and aging. SIRTs also influence carcinogenesis, making them potential targets for anticancer therapeutic strategies. In this study, we investigated the anticancer properties and underlying molecular mechanisms of a novel SIRT1 inhibitor, MHY2251, in human colorectal cancer (CRC) cells. MHY2251 reduced the viability of various human CRC cell lines, especially those with wild-type TP53. MHY2251 inhibited SIRT1 activity and SIRT1/2 protein expression, while promoting p53 acetylation, which is a target of SIRT1 in HCT116 cells. MHY2251 treatment triggered apoptosis in HCT116 cells. It increased the percentage of late apoptotic cells and the sub-G1 fraction (as detected by flow cytometric analysis) and induced DNA fragmentation. In addition, MHY2251 upregulated the expression of FasL and Fas, altered the ratio of Bax/Bcl-2, downregulated the levels of pro-caspase-8, -9, and -3 proteins, and induced subsequent poly(ADP-ribose) polymerase cleavage. The induction of apoptosis by MHY2251 was related to the activation of the caspase cascade, which was significantly attenuated by pre-treatment with Z-VAD-FMK, a pan-caspase inhibitor. Furthermore, MHY2251 stimulated the phosphorylation of c-Jun N-terminal kinase (JNK), and MHY2251-triggered apoptosis was blocked by pre-treatment with SP600125, a JNK inhibitor. This finding indicated the specific involvement of JNK in MHY2251-induced apoptosis. MHY2251 shows considerable potential as a therapeutic agent for targeting human CRC via the inhibition of SIRT1 and activation of JNK/p53 pathway.

6.
Int J Mol Sci ; 23(22)2022 Nov 08.
Artículo en Inglés | MEDLINE | ID: mdl-36430164

RESUMEN

Resveratrol (3,5,4'-trihydroxy-trans-stilbene), a polyphenol found in grapes, red wine, peanuts, and apples, has been reported to exhibit a wide range of biological and pharmacological properties. In addition, resveratrol has been reported to intervene in multiple stages of carcinogenesis. It has also been known to kill several human cancer cells through programmed cell death (PCD) mechanisms such as apoptosis, autophagy, and necroptosis. However, resveratrol has limitations in its use as an anticancer agent because it is susceptible to photoisomerization owing to its unstable double bond, short half-life, and is rapidly metabolized and eliminated. Trans-(E)-resveratrol is nontoxic, and has several biological and pharmacological activities. However, little is known about the pharmacological properties of the photoisomerized cis-(Z)-resveratrol. Therefore, many studies on resveratrol derivatives and analogues that can overcome the shortcomings of resveratrol and increase its anticancer activity are underway. This review comprehensively summarizes the literature related to resveratrol-induced PCD, such as apoptosis, autophagy, necroptosis, and the development status of synthetic resveratrol derivatives and analogues as novel anticancer drugs.


Asunto(s)
Antineoplásicos , Neoplasias , Estilbenos , Humanos , Resveratrol/farmacología , Neoplasias/tratamiento farmacológico , Apoptosis , Estilbenos/farmacología , Estilbenos/uso terapéutico , Estilbenos/química , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Descubrimiento de Drogas
7.
Int J Mol Sci ; 23(13)2022 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-35806184

RESUMEN

Bile acids are major signaling molecules that play a significant role as emulsifiers in the digestion and absorption of dietary lipids. Bile acids are amphiphilic molecules produced by the reaction of enzymes with cholesterol as a substrate, and they are the primary metabolites of cholesterol in the body. Bile acids were initially considered as tumor promoters, but many studies have deemed them to be tumor suppressors. The tumor-suppressive effect of bile acids is associated with programmed cell death. Moreover, based on this fact, several synthetic bile acid derivatives have also been used to induce programmed cell death in several types of human cancers. This review comprehensively summarizes the literature related to bile acid-induced programmed cell death, such as apoptosis, autophagy, and necroptosis, and the status of drug development using synthetic bile acid derivatives against human cancers. We hope that this review will provide a reference for the future research and development of drugs against cancer.


Asunto(s)
Ácidos y Sales Biliares , Neoplasias , Apoptosis , Ácidos y Sales Biliares/farmacología , Colesterol/metabolismo , Descubrimiento de Drogas , Humanos , Neoplasias/tratamiento farmacológico , Neoplasias/patología
8.
Int J Mol Sci ; 23(7)2022 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-35409117

RESUMEN

The flavonoid apigenin (4',5,7-trihydroxyflavone), which is one of the most widely distributed phytochemicals in the plant kingdom, is one of the most thoroughly investigated phenolic components. Previous studies have attributed the physiological effects of apigenin to its anti-allergic, antibacterial, antidiabetic, anti-inflammatory, antioxidant, antiviral, and blood-pressure-lowering properties, and its documented anticancer properties have been attributed to the induction of apoptosis and autophagy, the inhibition of inflammation, angiogenesis, and cell proliferation, and the regulation of cellular responses to oxidative stress and DNA damage. The most well-known mechanism for the compound's anticancer effects in human cancer cell lines is apoptosis, followed by autophagy, and studies have also reported that apigenin induces novel cell death mechanisms, such as necroptosis and ferroptosis. Therefore, the aim of this paper is to review the therapeutic potential of apigenin as a chemopreventive agent, as well as the roles of programmed cell death mechanisms in the compound's chemopreventive properties.


Asunto(s)
Apigenina , Apoptosis , Apigenina/farmacología , Apigenina/uso terapéutico , Autofagia , Línea Celular Tumoral , Proliferación Celular , Daño del ADN , Humanos
9.
Int J Mol Sci ; 23(3)2022 Jan 29.
Artículo en Inglés | MEDLINE | ID: mdl-35163511

RESUMEN

Sirtuins (SIRTs), which are nicotinamide adenine dinucleotide-dependent class III histone deacetylases, regulate cell division, survival, and senescence. Although sirtinol, a synthetic SIRT inhibitor, is known to exhibit antitumor effects, its mechanism of action is not well understood. Therefore, we aimed to assess the anticancer effects and underlying mechanism of MHY2245, a derivative of sirtinol, in HCT116 human colorectal cancer cells in vitro. Treatment with MHY2245 decreased SIRT1 activity and caused DNA damage, leading to the upregulation of p53 acetylation, and increased levels of p53, phosphorylation of H2A histone family member X, ataxia telangiectasia and Rad3-related kinase, checkpoint kinase 1 (Chk1), and Chk2. The level of the breast cancer type 1 susceptibility protein was also found to decrease. MHY2245 induced G2/M phase cell cycle arrest via the downregulation of cyclin B1, cell division cycle protein 2 (Cdc2), and Cdc25c. Further, MHY2245 induced HCT116 cell death via apoptosis, which was accompanied by internucleosomal DNA fragmentation, decreased B-cell lymphoma 2 (Bcl-2) levels, increased Bcl-2-asscociated X protein levels, cleavage of poly(ADP-ribose) polymerase, and activation of caspases -3, -8, and -9. Overall, MHY2245 induces cell cycle arrest, triggers apoptosis through caspase activation, and exhibits DNA damage response-associated anticancer effects.


Asunto(s)
Puntos de Control del Ciclo Celular/efectos de los fármacos , Neoplasias Colorrectales/metabolismo , Naftalenos/farmacología , Sirtuinas/antagonistas & inhibidores , Apoptosis , Benzamidas/química , Proteínas de Ciclo Celular/metabolismo , Línea Celular Tumoral , Neoplasias Colorrectales/tratamiento farmacológico , Regulación hacia Abajo , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Células HCT116 , Células HT29 , Humanos , Naftalenos/química , Naftoles/química
10.
Biomol Ther (Seoul) ; 28(6): 561-568, 2020 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-33073770

RESUMEN

We examined the anticancer effects of a novel sirtuin inhibitor, MHY2256, on HCT116 human colorectal cancer cells to investigate its underlying molecular mechanisms. MHY2256 significantly suppressed the activity of sirtuin 1 and expression levels of sirtuin 1/2 and stimulated acetylation of forkhead box O1, which is a target protein of sirtuin 1. Treatment with MHY2256 inhibited the growth of the HCT116 (TP53 wild-type), HT-29 (TP53 mutant), and DLD-1 (TP53 mutant) human colorectal cancer cell lines. In addition, MHY2256 induced G0/G1 phase arrest of the cell cycle progression, which was accompanied by the reduction of cyclin D1 and cyclin E and the decrease of cyclin-dependent kinase 2, cyclin-dependent kinase 4, cyclin-dependent kinase 6, phosphorylated retinoblastoma protein, and E2F transcription factor 1. Apoptosis induction was shown by DNA fragmentation and increase in late apoptosis, which were detected using flow cytometric analysis. MHY2256 downregulated expression levels of procaspase-8, -9, and -3 and led to subsequent poly(ADP-ribose) polymerase cleavage. MHY2256-induced apoptosis was involved in the activation of caspase-8, -9, and -3 and was prevented by pretreatment with Z-VAD-FMK, a pan-caspase inhibitor. Furthermore, the autophagic effects of MHY2256 were observed as cytoplasmic vacuolation, green fluorescent protein-light-chain 3 punctate dots, accumulation of acidic vesicular organelles, and upregulated expression level of light-chain 3-II. Taken together, these results suggest that MHY2256 could be a potential novel sirtuin inhibitor for the chemoprevention or treatment of colorectal cancer or both.

11.
Molecules ; 24(1)2018 Dec 28.
Artículo en Inglés | MEDLINE | ID: mdl-30597845

RESUMEN

We investigated the antitumor activity and action mechanism of MHY440 in AGS human gastric cancer cells. MHY440 inhibited topoisomerase (Topo) Ι activity and was associated with a DNA damage response signaling pathway. It exhibited a stronger anti-proliferative effect on AGS cells relative to Hs27 human foreskin fibroblast cells, and this effect was both time- and concentration-dependent. MHY440 also increased cell arrest in the G2/M phase by decreasing cyclin B1, Cdc2, and Cdc25c, and upregulating p53 and p73. MHY440 induced AGS cell apoptosis through the upregulation of Fas-L, Fas, and Bax as well as the proteolysis of BH3 interacting-domain death agonist and poly(ADP-ribose) polymerase. It also contributed to the loss of mitochondrial membrane potential. The apoptotic cell death induced by MHY440 was inhibited by pretreatment with Z-VAD-FMK, a pan-caspase inhibitor, indicating that apoptosis was caspase-dependent. Moreover, the apoptotic effect of MHY440 was reactive oxygen species (ROS)-dependent, as evidenced by the inhibition of MHY440-induced PARP cleavage and ROS generation via N-acetylcysteine-induced ROS scavenging. Taken together, MHY440 showed anticancer effects by inhibiting Topo I, regulating the cell cycle, inducing apoptosis through caspase activation, and generating ROS, suggesting that MHY440 has considerable potential as a therapeutic agent for human gastric cancer.


Asunto(s)
Apoptosis/efectos de los fármacos , Puntos de Control del Ciclo Celular/efectos de los fármacos , Daño del ADN , Especies Reactivas de Oxígeno/metabolismo , Transducción de Señal/efectos de los fármacos , Inhibidores de Topoisomerasa I/farmacología , Caspasas/metabolismo , Línea Celular Tumoral , Activación Enzimática/efectos de los fármacos , Humanos , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Modelos Moleculares , Conformación Molecular , Estructura Molecular , Unión Proteica , Neoplasias Gástricas/metabolismo , Relación Estructura-Actividad , Inhibidores de Topoisomerasa I/química
12.
Oncol Rep ; 38(3): 1783-1789, 2017 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-28731136

RESUMEN

Colorectal cancer (CRC) is the third most frequently diagnosed cancer and cause of cancer-related deaths. Despite advancements in conventional therapeutic approaches to CRC, most patients with CRC die of their disease. There is a need to develop novel therapeutic agents for this malignancy. Therefore, the present study aimed to examine the anticancer effects and elucidate the underlying mechanism of MHY451 in HCT116 human colorectal cancer cells. Treatment with MHY451 inhibited cell growth in a time- and concentration-dependent manner. MHY451 increased the accumulation of cell cycle progression at the G2/M phase. This agent decreased the protein level of cyclin B1 and its activating partners, Cdc25c and Cdc2, whereas it increased the cell cycle inhibitor p21WAF/CIP. The induction of apoptosis was observed by decreased viability, cleavage of poly(ADP-ribose) polymerase (PARP), alteration in the ratio of Bax/Bcl-2 protein expression and reduction of procaspase-8 and -9. Pretreatment with Z-VAD-FMK, a pan-caspase inhibitor, inhibited MHY451-induced apoptosis, indicating that apoptotic cell death by MHY451 was mediated through caspases. Moreover, the apoptotic effect of MHY451 was reactive oxygen species (ROS)-dependent, evidenced by the inhibition of MHY451-induced PARP cleavage and ROS generation by N-acetylcysteine-induced ROS scavenging. Taken together, these results demonstrate that MHY451 exerts anticancer effects by regulating the cell cycle, inducing apoptosis through caspase activation and generating ROS. These results suggest that MHY451 has considerable potential for chemoprevention or treatment of CRC or both.


Asunto(s)
Antineoplásicos/farmacología , Apoptosis/efectos de los fármacos , Puntos de Control del Ciclo Celular/efectos de los fármacos , Neoplasias Colorrectales/tratamiento farmacológico , Especies Reactivas de Oxígeno/metabolismo , Acetilcisteína/metabolismo , Caspasas/metabolismo , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Neoplasias Colorrectales/metabolismo , Ciclina B1/metabolismo , Puntos de Control de la Fase G2 del Ciclo Celular/efectos de los fármacos , Células HCT116 , Humanos , Poli(ADP-Ribosa) Polimerasas/metabolismo , Proteína X Asociada a bcl-2/metabolismo
13.
Int J Oncol ; 45(3): 1250-6, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-24969167

RESUMEN

Betaine is an important human nutrient obtained from various foods and studies in animals and humans have provided results suggesting their pathogenesis of various chronic diseases and points to a role in risk assessment and disease prevention. However, the molecular mechanisms of its activity remain poorly understood and warrant further investigation. This study was performed to investigate the anti-inflammation and tumor preventing capacity of betaine on colitis-associated cancer in mice. In in vivo experiments, we induced colon tumors in mice by azoxymethane (AOM) and dextran sulfate sodium (DSS) and evaluated the effects of betaine on tumor growth. Administration with betaine significantly decreased the incidence of tumor formation with downregulation of inflammation. Treatment with betaine inhibited ROS generation and GSSG concentration in colonic mucosa. Based on the qPCR data, administration of betaine inhibited inflammatory cytokines such TNF-α, IL-6, iNOS and COX-2. In in vitro experiments, LPS-induced NF-κB and inflammatory-related cytokines were inhibited by betaine treatment in RAW 264.7 murine macrophage cells. Our findings suggest that betaine is one of the candidates for the prevention of inflammation-associated colon carcinogenesis.


Asunto(s)
Antiinflamatorios/administración & dosificación , Betaína/administración & dosificación , Colitis/inducido químicamente , Colitis/tratamiento farmacológico , Neoplasias del Colon/inducido químicamente , Neoplasias del Colon/patología , Animales , Azoximetano , Línea Celular , Sulfato de Dextran , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Glutatión/metabolismo , Humanos , Macrófagos/metabolismo , Masculino , Ratones , Ratones Endogámicos ICR , Especies Reactivas de Oxígeno/metabolismo
14.
Int J Oncol ; 44(5): 1599-606, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24626522

RESUMEN

Apigenin (4',5,7-trihydroxyflavone) is a natural flavonoid, shown to have chemopreventive and/or anticancer properties in a variety of human cancer cells. The involvement of autophagy in apigenin-induced apoptotic cell death of HCT116 human colon cancer cells was investigated. Apigenin induced suppression of cell growth in a concentration-dependent manner in HCT116 cells. Flow cytometric analyses indicated that apigenin resulted in G2/M phase arrest. This flavone also suppressed the expression of both cyclin B1 and its activating partners, Cdc2 and Cdc25c, whereas the expression of cell cycle inhibitors, such as p53 and p53-dependent p21(CIP1/WAF1), was increased after apigenin treatment. Apigenin induced poly (ADP-ribose) polymerase (PARP) cleavage and decreased the levels of procaspase-8, -9 and -3. In addition, the apigenin-treated cells exhibited autophagy, as characterized by the appearance of autophagosomes under fluorescence microscopy and the accumulation of acidic vesicular organelles by flow cytometry. Furthermore, the results of the western blot analysis revealed that the levels of LC3-II, the processed form of LC3-I, was increased by apigenin. Treatment with the autophagy inhibitor 3-methyladenine (3-MA) significantly enhanced the apoptosis induced by apigenin, which was accompanied by an increase in the levels of PARP cleavage. These results indicate that apigenin has apoptosis- and autophagy-inducing effects in HCT116 colon cancer cells. Autophagy plays a cytoprotective role in apigenin-induced apoptosis, and the combination of apigenin and an autophagy inhibitor may be a promising strategy for colon cancer control.


Asunto(s)
Antineoplásicos/farmacología , Apigenina/farmacología , Apoptosis/efectos de los fármacos , Autofagia/efectos de los fármacos , Neoplasias Colorrectales/patología , Adenina/análogos & derivados , Adenina/farmacología , Ciclo Celular/efectos de los fármacos , Línea Celular Tumoral , Ciclina B1/metabolismo , Humanos , Transducción de Señal/efectos de los fármacos
15.
Int J Oncol ; 44(1): 256-64, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-24190633

RESUMEN

Colorectal cancer (CRC) is one of the most common malignant diseases and frequent cause of cancer deaths in the world. In spite of the significant advances in conventional therapeutic approaches to CRC, most patients ultimately die of their disease. There is a need to develop novel preventive approaches for this malignancy. This study was carried out to investigate the anticancer effect of MHY218, a hydroxamic acid derivative, in HCT116 human colon cancer cells. Treatment of cells with MHY218 resulted in growth inhibition and induction of apoptosis in a concentration-dependent manner. MHY218 induced G2/M phase arrest in the cell cycle progression which was observed by flow cytometry analysis, and a decrease in the protein expression of cyclin B1 and its activating partners Cdc25C and Cdc2. MHY218 also caused an increase in the expression levels of p21(WAF1/CIP1), a G2/M phase inhibitor, in a p53-independent pathway. The induction of apoptosis was observed by decreased viability, DNA fragmentation, cleavage of poly(ADP-ribose) polymerase, alteration in the ratio of Bax/Bcl-2 protein expression, and activation of caspase-3, -8 and -9. In addition, MHY218 treatment showed downregulation of the expression levels of the transcription factor nuclear factor-kappa B (NF-κB) in the nucleus, which has been reported to be implicated in the apoptotic cell death of several types of cancer cells, suppression of TNF-α-induced NF-κB activation, inhibition of cyclooxygenase-2 expression, repression of matrix metalloproteinase-9 activation and decrease of 5-lipoxygenase in a concentration-dependent manner. These results suggest that MHY218 may be a useful candidate to be used in the chemoprevention and/or treatment of colon cancer.


Asunto(s)
Apoptosis/efectos de los fármacos , Neoplasias del Colon/tratamiento farmacológico , FN-kappa B/genética , Éteres Fenílicos/administración & dosificación , Ácidos Pimélicos/administración & dosificación , Puntos de Control del Ciclo Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Neoplasias del Colon/genética , Neoplasias del Colon/patología , Ciclina B1/biosíntesis , Puntos de Control de la Fase G2 del Ciclo Celular/efectos de los fármacos , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Células HCT116 , Humanos , Ácidos Hidroxámicos/administración & dosificación , FN-kappa B/metabolismo , Proteínas de Unión al GTP rho/biosíntesis
16.
Int J Oncol ; 43(5): 1652-8, 2013 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-24008356

RESUMEN

Flavonoids have been demonstrated to provide health benefits in humans. Baicalein (5,6,7-trihydroxyflavone) is a phenolic flavonoid compound derived mainly from the root of Scutellaria baicalensis Georgi, a medicinal plant traditionally used in oriental medicine. Baicalein is widely used in Korean and Chinese herbal medicines as anti-inflammatory and anticancer therapy. However, the molecular mechanisms of its activity remain poorly understood and warrant further investigation. This study was performed to investigate the anticancer effect of baicalein on HCT116 human colon cancer cells and the tumor preventing capacity of baicalein on colitis-associated cancer in mice. In in vivo experiments, we induced colon tumors in mice by azoxymethane (AOM) and dextran sulfate sodium (DSS) and evaluated the effects of baicalein on tumor growth. Baicalein treatment on HCT116 cells resulted in a concentration-dependent inhibition of cell growth and induction of apoptotic cell death. The induction of apoptosis was determined by morphological changes and cleavage of poly(ADP-ribose) polymerase. Baicalein also suppressed the activation of NF-κB through PPARγ activation. These results indicate that the anti-inflammatory effects of baicalein may be mediated through PPARγ activation. Finally, administration with baicalein significantly decreased the incidence of tumor formation with inflammation. Our findings suggest that baicalein is one of the candidates for the prevention of inflammation-associated colon carcinogenesis.


Asunto(s)
Apoptosis/efectos de los fármacos , Azoximetano/toxicidad , Colitis/patología , Neoplasias del Colon/patología , Sulfato de Dextran/toxicidad , Flavanonas/farmacología , Scutellaria baicalensis/química , Animales , Antioxidantes/farmacología , Western Blotting , Carcinógenos/toxicidad , Movimiento Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Colitis/inducido químicamente , Colitis/tratamiento farmacológico , Neoplasias del Colon/inducido químicamente , Neoplasias del Colon/tratamiento farmacológico , Humanos , Masculino , Ratones , Ratones Endogámicos ICR , FN-kappa B/metabolismo , Poli(ADP-Ribosa) Polimerasas/metabolismo , Células Tumorales Cultivadas
17.
Int J Oncol ; 41(6): 2057-64, 2012 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-23064444

RESUMEN

Colorectal cancer (CRC) is the second most frequent cancer in men and the third most common cancer in women in Korea. In spite of the significant advances in conventional therapeutic approaches to CRC, most patients ultimately die of their disease. There is a need to develop novel preventive approaches for this malignancy. This study was carried out to investigate the anticancer effect of the diastereoisomeric compounds, MHY-449 and MHY-450, novel dihydrobenzofuro[4,5-b][1,8]naphthyridin-6-one derivatives, on HCT116 human colon cancer cells. MHY-449 exhibited more potent cytotoxicity than MHY-450, against HCT116 cells. Treatment of cells with MHY-449 resulted in growth inhibition and induction of apoptosis in a concentration-dependent manner, and inhibition of proliferation in a time-dependent manner. The induction of apoptosis was observed by decreased cell viability, DNA fragmentation, activation of protein levels involved in death receptors. Moreover, activation of caspase-3, -8 and -9 and cleavage of poly(ADP-ribose) polymerase and alteration in the ratio of Bax/Bcl-2 protein expression was observed. MHY-449 induced G2/M phase arrest in the cell cycle progression which was observed by flow cytometry analysis, and a decrease in the protein expression of cyclin B1 and its activating partners Cdc25c and Cdc2. MHY-449 also caused increase in the expression levels of p53, a tumor suppressor gene, and p21WAF1/CIP and p27KIP, G2/M phase inhibitors. These results suggest that MHY-449 may be a useful candidate for chemo-prevention and/or treatment of colon cancer.


Asunto(s)
Apoptosis/efectos de los fármacos , Benzofuranos/farmacología , Puntos de Control del Ciclo Celular/efectos de los fármacos , Neoplasias del Colon/metabolismo , Naftiridinas/farmacología , Proteínas Reguladoras de la Apoptosis/metabolismo , Benzofuranos/toxicidad , Caspasas/metabolismo , Proteínas de Ciclo Celular/metabolismo , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Activación Enzimática/efectos de los fármacos , Células HCT116 , Humanos , Naftiridinas/toxicidad , Transducción de Señal
18.
Int J Oncol ; 40(5): 1636-42, 2012 May.
Artículo en Inglés | MEDLINE | ID: mdl-22322725

RESUMEN

Combined therapy with multiple drugs is a common practice in the treatment of cancer, which can achieve better therapeutic effects than a single drug, and can reduce the side effects as well as drug resistance. This study aimed to determine whether aspirin (ASA) shows synergism with doxorubicin (DOX) in HepG2 human hepatocellular carcinoma cells in vitro and in a HepG2 cell xenograft model in BALB/c nude mice. When treated in combination, DOX (0.25 nmol/ml) and ASA (5 µmol/ml) produced strong synergy in growth inhibition, cell cycle arrest and importantly, apoptosis in vitro in comparison to single treatments. Moreover, ASA (100 mg/kg/day orally) and DOX (1.2 mg/kg biweekly ip) induced synergistic antitumor activity in the HepG2 cell xenograft model in nude mice. Therefore, the combination of ASA and DOX could be used as a novel combination regimen which provides a strong anticancer synergy in the treatment of hepatocellular carcinoma.


Asunto(s)
Protocolos de Quimioterapia Combinada Antineoplásica/farmacología , Apoptosis/efectos de los fármacos , Carcinoma Hepatocelular/tratamiento farmacológico , Proliferación Celular/efectos de los fármacos , Neoplasias Hepáticas/tratamiento farmacológico , Administración Oral , Animales , Aspirina/administración & dosificación , Carcinoma Hepatocelular/patología , Caspasas/metabolismo , Puntos de Control del Ciclo Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Doxorrubicina/administración & dosificación , Sinergismo Farmacológico , Activación Enzimática , Células Hep G2 , Humanos , Inyecciones Intraperitoneales , Neoplasias Hepáticas/patología , Masculino , Ratones , Ratones Endogámicos BALB C , Ratones Desnudos , Factores de Tiempo , Carga Tumoral/efectos de los fármacos , Ensayos Antitumor por Modelo de Xenoinjerto
19.
Int J Oncol ; 40(4): 1298-304, 2012 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-22179060

RESUMEN

Nonsteroidal anti-inflammatory drugs (NSAIDs) are known to induce apoptosis in a variety of cancer cells, including colon, prostate, breast and leukemia. Among them, aspirin, a classical NSAID, shows promise in cancer therapy in certain types of cancers. We hypothesized that aspirin might affect the growth of liver cancer cells since liver is the principal site for aspirin metabolism. Therefore, we investigated the effects of aspirin on the HepG2 human hepatocellular carcinoma cell line in vitro and the HepG2 cell xenograft model in BALB/c nude mice. We found that treatment with aspirin inhibited cell growth and induced apoptosis involving both extrinsic and intrinsic pathways as measured by DNA ladder formation, alteration in the Bax/Bcl-2 ratio, activation of the caspase activities and related protein expressions. In vivo antitumor activity assay also showed that aspirin resulted in significant tumor growth inhibition compared to the control. Oral administration of aspirin (100 mg/kg/day) caused a significant reduction in the growth of HepG2 tumors in nude mice. These findings suggest that aspirin may be used as a promising anticancer agent against liver cancer.


Asunto(s)
Antiinflamatorios no Esteroideos/farmacología , Apoptosis/efectos de los fármacos , Aspirina/farmacología , Carcinoma Hepatocelular/tratamiento farmacológico , Neoplasias Hepáticas/tratamiento farmacológico , Animales , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patología , Procesos de Crecimiento Celular/efectos de los fármacos , Humanos , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patología , Masculino , Ratones , Ratones Endogámicos BALB C , Ratones Desnudos , Ensayos Antitumor por Modelo de Xenoinjerto
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA