RESUMEN
Conductive 2D nanosheets have evoked tremendous scientific efforts because of their high efficiency as hybridization matrices for improving diverse functionalities of nanostructured materials. To address the problems posed by previously reported conductive nanosheets like poorly-interacting graphene and cost-ineffective RuO2 nanosheets, economically feasible noble-metal-free conductive [MnxCo1-2xNix]O2 oxide nanosheets are synthesized with outstanding interfacial interaction capability. The surface-optimized [Mn1/4Co1/2Ni1/4]O2 nanosheets outperformed RuO2/graphene nanosheets as hybridization matrices in exploring high-performance visible-light-active (λ >420 nm) photocatalysts. The most efficient g-C3N4-[Mn1/4Co1/2Ni1/4]O2 nanohybrid exhibited unusually high photocatalytic activity (NH4 + formation rate: 1.2 mmol g-1 h-1), i.e., one of the highest N2 reduction efficiencies. The outstanding hybridization effect of the defective [Mn1/4Co1/2Ni1/4]O2 nanosheets is attributed to the optimization of surface bonding character and electronic structure, allowing for improved interfacial coordination bonding with g-C3N4 at the defect sites. Results from spectroscopic measurements and theoretical calculations reveal that hybridization helps optimize the bandgap energy, and improves charge separation, N2 adsorptivity, and surface reactivity. The universality of the [Mn1/4Co1/2Ni1/4]O2 nanosheet as versatile hybridization matrices is corroborated by the improvement in the electrocatalytic activity of hybridized Co-Fe-LDH as well as the photocatalytic hydrogen production ability of hybridized CdS.
RESUMEN
Hybrid ion capacitors (HIC) are receiving a lot of attention due to their potential to achieve high energy and power densities, but they remain insufficient. It is imperative to explore outstanding and environmentally benign electrode materials to achieve high-performing HIC systems. Here, a unique boron carbon nitride (BCN)-based HIC system that comprises a microporous BCN structure and Fe1-xS nanoparticle incorporated BCN nanosheets (BNF) as cathode and anode, respectively is reported. The BNF is prepared through a facile one-pot calcination process using dithiooxamide (DTO), boric acid, and iron source. In situ, crystal growth of Fe1-xS facilitates the formation of BCN structure through the creation of holes/defects in the polymeric structure. The first principle density functional (DFT) theory simulations demonstrate the structural and electronic properties of the hybrid of BCN and Fe1-xS as compelling anode materials for HIC applications. The DFT calculations reveal that both BCN and BNF structures have excellent metallic characters with Li+ storage capacities of 128.4 and 1021.38 mAh g-1 respectively. These findings are confirmed experimentally where the BCN-based HIC system delivers exceptional energy and power densities of 267.5 Wh kg-1/749.5 W kg-1 toward Li+ storage, which outweighs previous HIC performances and demonstrates favorable performance for Li+ and Na+ storages.
RESUMEN
Sodium-ion batteries (SIBs) have received tremendous attention owing to their low cost, high working voltages, and energy density. However, the design and development of highly efficient SIBs represent a great challenge. Here, a unique and reliable approach is reported to prepare carbon nitride (CN) hybridized with nickel iron sulfide (NFCN) using simple reaction between Ni-Fe layered double hydroxide and dithiooxamide. The characterization results demonstrate that the hybridization with optimal amount of CN induces local distortion in the crystal structure of the hybrid, which would benefit SIB performance. Systematic electrochemical studies with a half-cell configuration show that the present hybrid structure exhibits a promising reversible specific capacity of 348 mAh g-1 at 0.1 A g-1 after 100 cycles with good rate capability. Simulation result reveals that the iron atoms in nickel iron sulfide act as a primary active site to accommodate Na+ ions. At last, with a full cell configuration using NFCN and Na3 V2 (PO4 )2 O2 F as the anode and cathode, respectively, the specific capacity appears to be ≈95 mAh g-1 after 50 cycles at 0.1 A g-1 condition. This excellent performance of these hybrids can be attributed to the synergistic effect of the incorporated CN species and the high conductivity of nickel-iron sulfide.
RESUMEN
Designing unique nanomaterials for the selective sensing of biomolecules is of significant interest in the field of nanobiotechnology. In this work, we demonstrated the synthesis of ordered Cu nanoparticle-functionalised mesoporous C3 N5 that has unique peroxidase-like nanozymatic activity for the ultrasensitive and selective detection of glucose and glutathione. A nano hard-templating technique together with the in-situ polymerisation and self-assembly of Cu and high N-containing CN precursor was adopted to introduce mesoporosity as well as high N and Cu content in mesoporous C3 N5 . Due to the ordered structure and highly dispersed Cu in the mesoporous C3 N5 , a large enhancement of the peroxidase mimetic activity in the oxidation of a redox dye in the presence of hydrogen peroxide could be obtained. Additionally, the optimised Cu-functionalised mesoporous C3 N5 exhibited excellent sensitivity to glutathione with a low detection limit of 2.0â ppm. The strong peroxidase activity of the Cu-functionalised mesoporous C3 N5 was also effectively used for the sensing of glucose with a detection limit of 0.4â mM through glucose oxidation with glucose oxidase. This unique Cu-functionalised mesoporous C3 N5 has the potential for detecting various molecules in the environment as well as for next-generation glucose and glutathione diagnostic devices.
Asunto(s)
Cobre , Nanopartículas , Cobre/química , Glucosa/química , Nanopartículas/química , Peróxido de Hidrógeno/química , Peroxidasas , Glutatión , ColorimetríaRESUMEN
Carbon-based nanomaterials, including graphene, fullerenes, and carbon nanotubes, are attracting significant attention as promising materials for next-generation energy storage and conversion applications. They possess unique physicochemical properties, such as structural stability and flexibility, high porosity, and tunable physicochemical features, which render them well suited in these hot research fields. Technological advances at atomic and electronic levels are crucial for developing more efficient and durable devices. This comprehensive review provides a state-of-the-art overview of these advanced carbon-based nanomaterials for various energy storage and conversion applications, focusing on supercapacitors, lithium as well as sodium-ion batteries, and hydrogen evolution reactions. Particular emphasis is placed on the strategies employed to enhance performance through nonmetallic elemental doping of N, B, S, and P in either individual doping or codoping, as well as structural modifications such as the creation of defect sites, edge functionalization, and inter-layer distance manipulation, aiming to provide the general guidelines for designing these devices by the above approaches to achieve optimal performance. Furthermore, this review delves into the challenges and future prospects for the advancement of carbon-based electrodes in energy storage and conversion.
Asunto(s)
Suministros de Energía Eléctrica , Carbono/química , Electrodos , Transferencia de Energía , Nanotubos de Carbono/química , Puntos Cuánticos , Grafito/química , Conductividad Eléctrica , Litio/química , Técnicas Electroquímicas , Sodio/química , CatálisisRESUMEN
The harvesting of photosynthetic electrons (PEs) directly from photosynthetic complexes has been demonstrated over the past decade. However, their limited efficiency and stability have hampered further practical development. For example, despite its importance, the interfacial electron transfer between the photosynthetic apparatus and the electrode has received little attention. In this study, we modified electrodes with RuO2 nanosheets to enhance the extraction of PEs from thylakoids, and the PE transfer was promoted by proton adsorption and surface polarity characteristics. The adsorbed protons maintained the potential of an electrode more positive, and the surface polarity enhanced thylakoid attachment to the electrode in addition to promoting ensemble docking between the redox species and the electrode. The RuO2 bioanode exhibited a five times larger current density and a four times larger power density than the Au bioanode. Last, the electric calculators were successfully powered by photosynthetic energy using a RuO2 bioanode.
RESUMEN
Intrauterine inflammation is shown to be associated with preterm birth, fetal inflammatory response syndrome, and other pregnancy-related comorbidities such as central nervous system diseases including cerebral palsy and periventricular leukomalacia, pulmonary diseases such as bronchopulmonary dysplasia and respiratory distress syndrome, and necrotizing enterocolitis, to name a few. Many animal studies on intrauterine inflammation demonstrate that ascending infection of reproductive organs or the production of proinflammatory cytokines by some stimuli in utero results in such manifestations. Melatonin, known for its primary function in maintaining circadian rhythm, is now recognized as one of the most potent antioxidant and anti-inflammatory drugs. In some studies, melatonin injection in pregnant animals with intrauterine inflammation significantly reduced the number of preterm births, the severity of structural disintegration of the fetal lungs observed in bronchopulmonary dysplasia, and perinatal brain injuries with improvement in neuromotor function. These implicated benefits of melatonin in pregnant women with intrauterine inflammation seem promising in many research studies, strongly supporting the hypothesis that melatonin has antioxidative and anti-inflammatory properties that can potentially be taken by pregnant women who are at risk of having intrauterine inflammation. In this review, the potential of melatonin for improving outcomes of the pregnancies with intrauterine inflammation will be discussed.
Asunto(s)
Antiinflamatorios/uso terapéutico , Lesiones Encefálicas/prevención & control , Displasia Broncopulmonar/prevención & control , Enfermedades Fetales/prevención & control , Inflamación/inmunología , Melatonina/uso terapéutico , Nacimiento Prematuro/inmunología , Útero/inmunología , Animales , Lesiones Encefálicas/etiología , Displasia Broncopulmonar/etiología , Displasia Broncopulmonar/inmunología , Femenino , Enfermedades Fetales/etiología , Humanos , EmbarazoRESUMEN
We report on the synthesis of 3D mesoporous fullerene/carbon hybrid materials with ordered porous structure and high surface area by mixing the solution of fullerene and sucrose molecules in the nanochannels of 3D mesoporous silica, KIT-6 via nanotemplating approach. The addition of sucrose molecules in the synthesis offers a thin layer of carbon between the fullerene molecules which enhances not only the specific surface area and the specific pore volume but also the conductivity of the hybrid materials. The prepared hybrids exhibit 3D mesoporous structure and show a much higher specific surface area than that of the pure mesoporous fullerene. The hybrids materials are used as the electrodes for supercapacitor and Li-ion battery applications. The optimised hybrid sample shows an excellent rate capability and a high specific capacitance of 254 F/g at the current density of 0.5 A/g, which is much higher than that of the pure mesoporous fullerene, mesoporous carbon, activated carbon and multiwalled carbon nanotubes. When used as the electrode for Li-ion battery, the sample delivers the largest specific capacity of 1067 mAh/g upon 50 cycles at the current density of 0.1 A/g with stability. These results reveal that the addition of carbon in the mesoporous fullerene with 3D structure makes a significant impact on the electrochemical properties of the hybrid samples, demonstrating their potential for applications in Li-ion battery and supercapacitor devices.
RESUMEN
Liquid scintillation counters are common instruments used in the measurement of pure beta-emitting radionuclides, and while they represent a conventional radiometric technique, they are still competitive for their potential to measure multiple radionuclides simultaneously. In this work, we propose an algorithm based on an artificial neural network (ANN) for the simultaneous analysis of the beta-ray spectra of 3H and 14C in dual beta-labeled samples using a liquid scintillation counter. We achieved percentage deviations below 5.0% using the proposed algorithm in 16 out of 18 cases, with RMSDs below 1.5% in 17 out of 18 cases. The trained ANN also produced activity ratios with high accuracy even while having to deal with highly fluctuating spectra. Results demonstrate that the rapid predictions with a short measurement time from our proposed ANN method are compatible with the calculated ones from previous studies that were obtained with long measurement times.
RESUMEN
Borophene, a 2D allotrope of boron and the lightest elemental Dirac material, is the latest very promising 2D material owing to its unique structural and electronic characteristics of the X3 and ß12 phases. The high atomic density on ridgelines of the ß12 phase of borophene provides a substantial orbital overlap, which leads to an excellent electron density in the conduction level and thus to a highly metallic behavior. These unique structural characteristics and electronic properties of borophene attract significant scientific interest. Herein, approaches for crystal growth/synthesis of these unique nanostructures and their potential technological applications are discussed. Various substrate-supported ultrahigh-vacuum growth techniques for borophene, such as molecular beam epitaxy, atomic layer deposition, and chemical vapor deposition, along with their challenges, are also summarized. The sonochemical exfoliation and modified Hummer's technique for the synthesis of free-standing borophene are also discussed. Solution-phase exfoliation seems to address the scalability issues and expands the applications of these unique materials to various fields, including renewable energy devices and ultrafast sensors. Furthermore, the electronic, optical, thermal, and elastic properties of borophene are thoroughly discussed and are compared with those of graphene and its "cousins." Numerous frontline applications are envisaged and an outlook is presented.
RESUMEN
Mesoporous carbon nitride (MCN) with well-ordered porous structures is a promising anode material for secondary ion batteries owing to their unique physico- and electrochemical properties. However, the practical application of these MCNs in sodium-ion batteries (SIBs) is still limited because of their confined interlayer distance, which results in restricted accommodation of Na ions inside the lattice. Here, we report on the synthesis of highly ordered sulfur-doped MCN (S-MCN) through a hard template approach by employing dithiooxamide (DTO) as a single molecular precursor containing carbon, nitrogen, and sulfur elements. The interlayer distance of carbon nitride is significantly expanded upon the introduction of larger S ions on the MCN lattice, which enables high capability of Na ion accommodation. We also demonstrate through the first-principles density functional theory calculation that the present S-MCN is highly optimized not only for the chemical structure but also for uptaking abundant Na ions with high adsorption energy. The specific discharge capacity of SIBs appears to be remarkably enhanced for S-MCN (304.2 mA h g-1) compared to the nonporous S-CN (167.9 mA h g-1) and g-C3N4 (5.4 mA h g-1), highlighting the pivotal roles of the highly ordered mesoporous structure and S-doping in enhancing the electrochemical functionality of carbon nitride as an anode material for SIBs.
RESUMEN
A scalable organic intercalant-free liquid exfoliation route to 2D nanosheets (NSs) of layered transition-metal oxides (TMOs) is developed by employing hydronium-intercalated derivatives as precursors. The replacement of interlayer alkali metal ions with larger hydronium ions via acid treatment makes possible the efficient liquid exfoliation of TMOs without any assistance of organic intercalant cations. Not only a weakening of interlayer electrostatic interaction upon hydronium intercalation but also an efficient solvation of deintercalated hydronium ions via hydrogen bonding with polar solvents is mainly responsible for the high efficacy of hydronium-intercalated TMOs as precursors for liquid exfoliation. The nature of the solvent employed also has a profound effect on the exfoliation yield of these TMO NSs; viscosity, surface tension, density, and Hansen solubility parameter as well as the capability to solvate the exfoliated NSs and hydronium ions are crucial factors for determining the exfoliation efficiency of the hydronium-intercalated precursor. All the obtained Ti1- xO2, MnO2, and RuO2 NSs show highly anisotropic 2D morphologies and distinct negative surface charges with a zeta potential of -30 to -50 mV. Such distinct surface charges of these NSs render them versatile hybridization matrices for the synthesis of novel nanohybrids with enhanced functionalities. The hybridization with the liquid-exfoliated TMO NSs is quite effective in improving the photocatalytic activity of CdS and the electrode functionalities of graphene and graphene-layered double hydroxide nanohybrids. The present study underscores the usefulness of the present liquid exfoliation method in synthesizing organic-free TMO NSs and their nanohybrids as well as in widening the application field of exfoliated TMO NSs.
RESUMEN
An environmental radiation survey using a gamma-ray spectrometer is used to rapidly detect radioactive contamination over a wide area of ground that was released from nuclear events. For the successful application of a gamma-ray spectrometer to the calculation of the radioactivity concentration in the ground and the dose rate at 1 m above the ground, it is necessary to build a calibration procedure to obtain the counting efficiency at the in situ measurement, which means in situ calibration factor to report the calculation results from the measured net count rate according to the diverse detection geometries. This study is focused on the development of a program to calculate the in situ calibration factor and report the survey results in the environmental radiation surveys using three kinds of gamma-ray spectrometers, which have been widely used in the field of in situ measurements: a coaxial HPGe detector, cylindrical NaI(Tl), and rectangular NaI(Tl). The program is based on the results of diverse theoretical calculations of the unscattered photon fluence at the detector height, detector responses of three detectors, and their angular corrections. The developed program was successfully applied to the estimation of the radioactivity concentration of nuclides in the ground and the dose rate at 1 m height above the ground induced from them.
Asunto(s)
Rayos gamma , Monitoreo de Radiación/instrumentación , Radiometría/instrumentación , Radiometría/métodos , Espectrometría gamma/métodos , Algoritmos , Calibración , Radioisótopos de Cesio , Simulación por Computador , Método de Montecarlo , Fotones , Monitoreo de Radiación/métodos , Programas Informáticos , Contaminantes Radiactivos del Suelo/análisisRESUMEN
An effective chemical way to optimize the oxygen electrocatalyst and Li-O2 electrode functionalities of metal oxide can be developed by the control of chemical bond nature with the surface anchoring of highly oxidized selenate (SeO4 2- ) clusters. The bond competition between (Se6+ -O) and (Mn-O) bonds is quite effective in stabilizing Jahn-Teller-active Mn3+ state and in increasing oxygen electron density of α-MnO2 nanowire (NW). The selenate-anchored α-MnO2 NW shows excellent oxygen electrocatalytic activity and electrode performance for Li-O2 batteries, which is due to the improved charge transfer kinetics and reversible formation/decomposition of Li2 O2 . The present study underscores that the surface anchoring of highly oxidized cluster can provide a facile, effective way of improving the oxygen electrocatalyst and electrochemical performances of nanostructured metal oxide in Li-O2 cells.
RESUMEN
[This corrects the article DOI: 10.1039/C6RA24140A.].
RESUMEN
Efficient visible light active hybrid photocatalysts for H2 production can be synthesized by the intercalative hybridization of Zn-Cr-layered double hydroxide (Zn-Cr-LDH) with a mesoporous g-C3N4 lattice. Small Zn-Cr-LDH nanocrystals with a size of â¼6 nm are immobilized in the mesopores of g-C3N4. Beyond an optimal LDH/g-C3N4 molar ratio of 0.3, a further increase in the LDH content leads to the surface deposition of LDH crystals on the g-C3N4 material as well as the intercalative immobilization of LDH into its mesopores, indicating the controllability of the LDH deposition site. The Zn-Cr-LDH-g-C3N4 nanohybrids exhibit smaller surface areas than the pristine g-C3N4, confirming the intercalative stabilization of Zn-Cr-LDH nanocrystals in the mesopore of g-C3N4. The hybridization between Zn-Cr-LDH and g-C3N4 is effective in enhancing visible light absorptivity and also in depressing electron-hole recombination, which is attributable to an efficient electronic coupling between both the hybridized components. The present Zn-Cr-LDH-g-C3N4 nanohybrid exhibits promising photocatalytic activities for visible light-induced H2 production at a rate of 155.7 µmol g-1 h-1, which is much superior to that of the pristine g-C3N4 (21.7 µmol g-1 h-1). The present study underscores that the intercalative immobilization of Zn-Cr-LDH crystals in the limited space of a mesopore is quite useful in improving the visible light active photocatalyst functionality of mesoporous carbon nitride.
RESUMEN
We analyzed the consumer goods containing NORM by ICP-MS and evaluated the external dose. To evaluate the external dose, we assumed the small room model as irradiation scenario and calculated the specific effective dose rate using MCNPX code. The external doses for twenty goods are less than 1 mSv considering the specific effective dose rates and usage quantities. However, some of them have relatively high dose and the activity concentration limits are necessary as a screening tool.
Asunto(s)
Radiación de Fondo , Seguridad de Productos para el Consumidor , Radioisótopos/análisis , Ropa de Cama y Ropa Blanca , Humanos , Joyas/análisis , Espectrometría de Masas , Modelos Biológicos , Dosis de Radiación , Radiometría , República de CoreaRESUMEN
The galvanic exchange reaction of an exfoliated 2D layered metal oxide nanosheet (NS) with excess substituent metal cations enables the synthesis of a mixed metal oxide 2D NS with controllable cation compositions and physicochemical properties. The reaction of the exfoliated MnO2 NS with Fe2+ or Sn2+ ions at 90 °C induces the uniform galvanic replacement of Mn ions with these substituent ions, whereas the same reaction at 25 °C results in the intercalative restacking of the negatively-charged MnO2 NS with Fe2+ or Sn2+ cations. Upon the galvanic exchange reaction, the highly anisotropic MnO2 2D NS retains its original 2D morphology and layered structure, which is in stark contrast to 0D nanoparticles yielding hollow nanospheres via the galvanic exchange reaction. This observation is attributable to the thin thickness of the 2D NS allowing the simultaneous replacement of all the component surface-exposed metal ions. The resulting substitution of the MnO2 NS with Fe and Sn ions remarkably improves the electrode performance of the carbon-coated derivatives of the MnO2 NS for lithium ion batteries. The present study clearly demonstrates that the galvanic exchange reaction can provide an efficient method not only to tailor cation compositions but also to improve the functionalities of 2D metal oxide NSs and their carbon-coated derivatives.
RESUMEN
The composite formation with a conductive metal sulfide domain can provide an effective methodology to improve the Na-ion electrode functionality of metal oxide. The heat treatment of TiO2(B) under CS2 flow yields an intimately coupled TiO2(B)-TiS2 nanocomposite with intervened TiS2 domain, since the reaction between metal oxide and CS2 leads to the formation of metal sulfide and CO2. The negligible change in lattice parameters and significant enhancement of visible light absorption upon the reaction with CS2 underscore the formation of conductive metal sulfide domains. The resulting TiO2(B)-TiS2 nanocomposites deliver greater discharge capacities with better rate characteristics for electrochemical sodiation-desodiation process than does the pristine TiO2(B). The 23Na magic angle spinning nuclear magnetic resonance analysis clearly demonstrates that the electrode activities of the present nanocomposites rely on the capacitive storage of Na+ ions, and the TiS2 domains in TiO2(B)-TiS2 nanocomposites play a role as mediators for Na+ ions to and from TiO2(B) domains. According to the electrochemical impedance spectroscopy, the reaction with CS2 leads to the significant enhancement of charge transfer kinetics, which is responsible for the accompanying improvement in electrode performance. The present study provides clear evidence for the usefulness in composite formation between the semiconducting metal oxide and metal sulfide in exploring new efficient NIB electrode materials.
RESUMEN
A universal methodology to efficiently improve the photocatalyst performance of semiconductors was developed by employing exfoliated RuO2 two-dimensional nanosheets as a conducting hybridization matrix. The hybridization with a RuO2 nanosheet is easily achieved by crystal growth or electrostatically derived anchoring of semiconductor nanocrystals on the RuO2 nanosheet. An enhanced chemical interaction of inorganic semiconductor with hydrophilic RuO2 nanosheet is fairly effective in optimizing their photocatalytic activity and photostability by the enhancement of charge separation and charge mobility. The RuO2 -containing nanohybrids show much better photocatalyst functionalities than do the graphene-containing ones. The present study clearly demonstrates that hydrophilic RuO2 nanosheets are superior hybridization matrices, over the widely used hydrophobic graphene nanosheets, for exploring new efficient hybrid-type photocatalysts.