Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
J Neuroinflammation ; 21(1): 250, 2024 Oct 04.
Artículo en Inglés | MEDLINE | ID: mdl-39367382

RESUMEN

BACKGROUND: IL-2 regulates T cell differentiation: low-dose IL-2 induces immunoregulatory Treg differentiation, while high-dose IL-2 acts as a potent activator of cytotoxic T cells and NK cells. Therefore, high-dose IL-2 has been studied for use in cancer immunotherapy. We aimed to utilize low-dose IL-2 to treat inflammatory diseases such as obesity and insulin resistance, which involve low-grade chronic inflammation. MAIN BODY: Systemic administration of low-dose IL-2 increased Treg cells and decreased inflammation in gonadal white adipose tissue (gWAT), leading to improved insulin sensitivity in high-fat diet-fed obese mice. Additionally, central administration of IL-2 significantly enhanced insulin sensitivity through the activation of the sympathetic nervous system. The sympathetic signaling induced by central IL-2 administration not only decreased interferon γ (IFNγ) + Th1 cells and the expression of pro-inflammatory cytokines, including Il-1ß, Il-6, and Il-8, but also increased CD4 + CD25 + FoxP3 + Treg cells and Tgfß expression in the gWAT of obese mice. These phenomena were accompanied by hypothalamic microgliosis and activation of pro-opiomelanocortin neurons. Furthermore, sympathetic denervation in gWAT reversed the enhanced insulin sensitivity and immune cell polarization induced by central IL-2 administration. CONCLUSION: Overall, we demonstrated that IL-2 improves insulin sensitivity through two mechanisms: direct action on CD4 + T cells and via the neuro-immune axis triggered by hypothalamic microgliosis.


Asunto(s)
Hipotálamo , Resistencia a la Insulina , Interleucina-2 , Ratones Endogámicos C57BL , Obesidad , Sistema Nervioso Simpático , Animales , Ratones , Resistencia a la Insulina/fisiología , Interleucina-2/metabolismo , Obesidad/metabolismo , Hipotálamo/metabolismo , Hipotálamo/efectos de los fármacos , Sistema Nervioso Simpático/efectos de los fármacos , Masculino , Dieta Alta en Grasa/efectos adversos , Ratones Obesos , Linfocitos T Reguladores/efectos de los fármacos
2.
Endocrinol Metab (Seoul) ; 38(6): 760-769, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37915121

RESUMEN

BACKGRUOUND: G protein-coupled receptor 40 (GPR40) is a key molecule in diabetes and fatty liver, but its role in endothelial dysfunction remains unclear. Our objective in this study was to determine whether GPR40 agonists protect endothelial cells against palmitatemediated oxidative stress. METHODS: Human umbilical vein endothelial cells (HUVECs) were used to investigate effects of various GPR40 agonists on vascular endothelium. RESULTS: In HUVECs, AM1638, a GPR40-full agonist, enhanced nuclear factor erythroid 2-related factor 2 (NRF2) translocation to the nucleus and heme oxygenase-1 (HO-1) expression, which blocked palmitate-induced superoxide production. Those antioxidant effects were not detected after treatment with LY2922470 or TAK875, GPR40-partial agonists, suggesting that GPR40 regulates reactive oxygen species (ROS) removal in a ligand-dependent manner. We also found that palmitate-induced CCAAT/enhancer-binding protein homologous protein expression; X-box binding protein-1 splicing, nuclear condensation, and fragmentation; and caspase-3 cleavage were all blocked in an NRF2-dependent manner after AM1638 treatment. Both LY2922470 and TAK875 also improved cell viability independent of the NRF2/ROS pathway by reducing palmitate-mediated endoplasmic reticulum stress and nuclear damage. GPR40 agonists thus have beneficial effects against palmitate in HUVECs. In particular, AM1638 reduced palmitate-induced superoxide production and cytotoxicity in an NRF2/HO-1 dependent manner. CONCLUSION: GPR40 could be developed as a good therapeutic target to prevent or treat cardiovascular diseases such as atherosclerosis.


Asunto(s)
Factor 2 Relacionado con NF-E2 , Superóxidos , Humanos , Estrés del Retículo Endoplásmico , Células Endoteliales de la Vena Umbilical Humana , Factor 2 Relacionado con NF-E2/metabolismo , Factor 2 Relacionado con NF-E2/farmacología , Especies Reactivas de Oxígeno/metabolismo , Especies Reactivas de Oxígeno/farmacología , Receptores Acoplados a Proteínas G/metabolismo , Superóxidos/metabolismo , Superóxidos/farmacología
3.
Front Pharmacol ; 13: 906717, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36313357

RESUMEN

Olanzapine (OLZ), a widely used second-generation antipsychotic drug, is known to cause metabolic side effects, including diabetes and obesity. Interestingly, OLZ-induced metabolic side effects have been demonstrated to be more profound in females in human studies and animal models. Metformin (MET) is often used as a medication for the metabolic side effects of OLZ. However, the mechanisms underlying OLZ-induced metabolic disturbances and their treatment remain unclear. Recent evidence has suggested that hypothalamic inflammation is a key component of the pathophysiology of metabolic disorders. On this background, we conducted this study with the following three objectives: 1) to investigate whether OLZ can independently induce hypothalamic microgliosis; 2) to examine whether there are sex-dependent differences in OLZ-induced hypothalamic microgliosis; and 3) to examine whether MET affects hypothalamic microgliosis. We found that administration of OLZ for 5 days induced systemic glucose intolerance and hypothalamic microgliosis and inflammation. Of note, both hypothalamic microglial activation and systemic glucose intolerance were far more evident in female mice than in male mice. The administration of MET attenuated hypothalamic microglial activation and prevented OLZ-induced systemic glucose intolerance and hypothalamic leptin resistance. Minocycline, a tetracycline derivative that prevents microgliosis, showed similar results when centrally injected. Our findings reveal that OLZ induces metabolic disorders by causing hypothalamic inflammation and that this inflammation is alleviated by MET administration.

4.
BMB Rep ; 55(6): 293-298, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35651327

RESUMEN

Antipsychotics have been widely accepted as a treatment of choice for psychiatric illnesses such as schizophrenia. While atypical antipsychotics such as aripiprazole are not associated with obesity and diabetes, olanzapine is still widely used based on the anticipation that it is more effective in treating severe schizophrenia than aripiprazole, despite its metabolic side effects. To address metabolic problems, metformin is widely prescribed. Hypothalamic proopiomelanocortin (POMC) neurons have been identified as the main regulator of metabolism and energy expenditure. Although the relation between POMC neurons and metabolic disorders is well established, little is known about the effects of olanzapine and metformin on hypothalamic POMC neurons. In the present study, we investigated the effect of olanzapine and metformin on the hypothalamic POMC neurons in female mice. Olanzapine administration for 5 days significantly decreased Pomc mRNA expression, POMC neuron numbers, POMC projections, and induced leptin resistance before the onset of obesity. It was also observed that coadministration of metformin with olanzapine not only increased POMC neuron numbers and projections but also improved the leptin response of POMC neurons in the olanzapine-treated female mice. These findings suggest that olanzapine-induced hypothalamic POMC neuron abnormality and leptin resistance, which can be ameliorated by metformin administration, are the possible causes of subsequent hyperphagia. [BMB Reports 2022; 55(6): 293-298].


Asunto(s)
Antipsicóticos , Metformina , Animales , Antipsicóticos/metabolismo , Antipsicóticos/farmacología , Aripiprazol/metabolismo , Aripiprazol/farmacología , Femenino , Hipotálamo/metabolismo , Leptina/metabolismo , Metformina/metabolismo , Metformina/farmacología , Ratones , Neuronas/metabolismo , Obesidad/tratamiento farmacológico , Obesidad/metabolismo , Olanzapina/metabolismo , Olanzapina/farmacología , Proopiomelanocortina/genética , Proopiomelanocortina/metabolismo , Proopiomelanocortina/farmacología
5.
Nanoscale Res Lett ; 12(1): 581, 2017 Nov 03.
Artículo en Inglés | MEDLINE | ID: mdl-29101580

RESUMEN

A microliter-scale solution process was used to fabricate large-area, uniform films of silver nanowires (AgNWs). These thin films with cross-AgNWs were deposited onto Au substrates by dragging the meniscus of a microliter drop of a coating solution trapped between two plates. The hot spot density was tuned by controlling simple experimental parameters, which changed the optical properties of the resulting films. The cross-AgNW films on the Au surface served as excellent substrates for surface-enhanced Raman spectroscopy, with substantial electromagnetic field enhancement and good reproducibility.

6.
Mol Cells ; 36(2): 163-8, 2013 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-23812537

RESUMEN

Members of the Tre-2/Bub2/Cdc16 (TBC) family of proteins are believed to function as GTPase-activating proteins (GAPs) for Rab GTPases, which play pivotal roles in intracellular membrane trafficking. Although membrane trafficking is fundamental to neuronal morphogenesis and function, the roles of TBC-family Rab GAPs have been poorly characterized in the nervous system. In this paper, we provide genetic evidence that Tbc1d15-17, the Drosophila homolog of mammalian Rab7-GAP TBC1d15, is required for normal presynaptic growth and postsynaptic organization at the neuromuscular junction (NMJ). A loss-of-function mutation in Tbc1d15-17 or its presynaptic knockdown leads to an increase in synaptic bouton number and NMJ length. Tbc1d15-17 mutants are also defective in the distribution of the postsynaptic scaffold Discs-large (Dlg) and in the level of the postsynaptic glutamate subunit GluRIIA. These postsynaptic phenotypes are recapitulated by postsynaptic knockdown of Tbc1d15-17. We also show that presynaptic overexpression of a constitutively active Rab7 mutant in a wild-type background causes a synaptic overgrowth phenotype resembling that of Tbc1d15-17 mutants, while a dominant-negative form of Rab7 has the opposite effect. Together, our findings establish a novel role for Tbc1d15-17 and its potential substrate Rab7 in regulating synaptic development.


Asunto(s)
Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila/fisiología , Proteínas del Tejido Nervioso/metabolismo , Unión Neuromuscular/fisiología , Terminales Presinápticos/fisiología , Secuencia de Aminoácidos , Animales , Drosophila/genética , Drosophila/crecimiento & desarrollo , Proteínas de Drosophila/fisiología , Proteínas Activadoras de GTPasa/química , Proteínas Activadoras de GTPasa/genética , Proteínas Activadoras de GTPasa/metabolismo , Técnicas de Silenciamiento del Gen , Datos de Secuencia Molecular , Proteínas del Tejido Nervioso/genética , Unión Neuromuscular/genética , Unión Neuromuscular/metabolismo , Alineación de Secuencia , Proteínas de Unión al GTP rab/metabolismo , Proteínas de Unión a GTP rab7
7.
Mol Cells ; 34(3): 315-21, 2012 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-22936388

RESUMEN

In fission yeast, Schizosaccharomyces pombe, the spnab2 gene encodes an ortholog of the budding yeast nuclear abundant poly(A)(+) RNA-binding protein 2 (Nab2) that is an essential protein required for both mRNA biogenesis and nuclear export of mRNA to the cytoplasm. We have previously isolated three mutants (SLnab1-3) that showed synthetic lethality under the repressed condition of spnab2 expression. In this study, we isolated a novel rmn1 gene as a multicopy suppressor that complemented the defects in growth and mRNA export of SLnab1 mutant cells. The rmn1 gene contained three introns and encoded a 589 amino-acid protein with the RNA recognition motif (RRM) in the central region. The Δrmn1 null mutant was viable but showed a s light mRNA export defect. However, its over-expression caused a deleterious effect on growth accompanied by intense accumulation of poly(A)(+) RNA in the nucleus. The combination of Δrmn1 with Δspnab2 or Δspmex67 also inhibited growth. In addition, Rmn1p was associated with Rae1p in vivo. These results suggest that rmn1 is a novel gene that is functionally linked to spnab2.


Asunto(s)
ARN Mensajero/metabolismo , Proteínas de Unión al ARN/genética , Proteínas de Schizosaccharomyces pombe/genética , Schizosaccharomyces/genética , Núcleo Celular/genética , Núcleo Celular/metabolismo , Regulación Fúngica de la Expresión Génica , Genes Supresores , Prueba de Complementación Genética , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Mutación , Proteínas Asociadas a Matriz Nuclear/genética , Proteínas Asociadas a Matriz Nuclear/metabolismo , Proteínas de Transporte Nucleocitoplasmático/genética , Proteínas de Transporte Nucleocitoplasmático/metabolismo , Proteínas de Unión a Poli(A) , Transporte de ARN/genética , Proteínas de Unión al ARN/metabolismo , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Schizosaccharomyces/crecimiento & desarrollo , Schizosaccharomyces/metabolismo , Proteínas de Schizosaccharomyces pombe/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...