Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Chemosphere ; 356: 141956, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38604514

RESUMEN

Emerging micropollutants, such as pharmaceuticals and microplastics (MPs), have become a pressing water environmental concern. The aim of this study is to synthesize chitosan sponges using graphene oxide (GO) and genipin (GP) for the removal of pharmaceuticals (diclofenac (DCF) and triclosan (TCS)) and MPs, verify their adsorption mechanisms, evaluate the effects of temperature, pH, and salinity on their adsorption capacities, and determine their reusability. The GO5/CS/GP sponge exhibited a macroporous nature (porosity = 95%, density = 32.6 mg/cm3). GO and cross-linker GP enhanced the adsorption of DCF, TCS, and polystyrene (PS) MPs onto the CS sponges. The adsorption of DCF, TCS, and PS MPs involved multiple steps: surface diffusion and pore diffusion of the sponge. The adsorption isotherms demonstrated that Langmuir model was the most fitted well model to explain adsorption of TCS (qm = 7.08 mg/g) and PS MPs (qm = 7.42 mg/g) on GO5/CS/GP sponge, while Freundlich model suited for DCF adsorption (qm = 48.58 mg/g). DCF adsorption was thermodynamically spontaneous and endothermic; however, the adsorption of TCS and PS MPs was exothermic (283-313 K). The optimal pH was 5.5-7 due to the surface charge of the GO5/CS/GP sponge (pHzpc = 5.76) and ionization of DCF, TCS, and PS MPs. As the salinity increased, DCF removal efficiency drastically decreased due to the weakening of electrostatic interactions; however, TCS removal efficiency remained stable because TCS adsorption was mainly caused by hydrophobic and π-π interactions rather than electrostatic interaction. The removal of PS MPs was enhanced by the electrostatic screening effects of high Na+ ions. PS nanoplastics (average size = 26 nm) were removed by the GO5/CS/GP sponge at a rate of 73.0%, which was better than that of PS MPs (41.5%). In addition, the GO5/CS/GP sponge could be recycled over five adsorption-desorption cycles.


Asunto(s)
Quitosano , Diclofenaco , Grafito , Iridoides , Microplásticos , Triclosán , Contaminantes Químicos del Agua , Grafito/química , Diclofenaco/química , Quitosano/química , Adsorción , Contaminantes Químicos del Agua/química , Triclosán/química , Microplásticos/química , Iridoides/química , Purificación del Agua/métodos , Concentración de Iones de Hidrógeno
2.
Chemosphere ; 349: 140788, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38042428

RESUMEN

Diclofenac (DCF) is frequently detected in water bodies (ng/L to g/L) as it is not completely removed by conventional wastewater treatment plants. Adsorption and photocatalysis have been studied as promising methods for treating DCF; however, both processes have limitations. Thus, in this study, the removal efficiency of DCF is evaluated using a magnetite/reduced graphene oxide (Fe3O4/RGO) nanocomposite via a coupled adsorption-catalysis process. The Fe3O4/RGO nanocomposite was successfully synthesized using a microwave-assisted solvothermal method and exhibited a bandgap of 2.60 eV. The kinetic data best fitted the Elovich model (R2 = 0.994, χ2 = 0.29), indicating rapid adsorption. The maximum DCF adsorption capacity calculated using the Langmuir model was 80.33 mg/g. An ultraviolet C (UVC) light source and 0.1 g/L of Fe3O4/RGO nanocomposite were the optimum conditions for the removal of DCF (C0 = 30 mM) by a coupled adsorption-photocatalysis process (first-order rate constant (k) = 0.088/min), which was greater than the single adsorption (k = 0.029/min) and pre-adsorption and post-photocatalysis (k = 0.053/min) processes. This indicates that the adsorbed DCF did not hamper the photocatalytic reaction of the Fe3O4/RGO nanocomposite, but rather enhanced the coupled adsorption-photocatalytic reaction. DCF removal efficiency was higher at acidic conditions (pH 4.3-5.0), because high H+ promotes the generation of certain reactive oxygen species (ROS) and increases of electrostatic interaction. The presence of NaCl and CaCl2 (10 mM) did not notably affect the total DCF removal efficiency; however, Ca2+ affected the initial DCF adsorption affinity. Scavenger experiments demonstrated O2∙- and h+ play a key ROS than ·OH to degrade DCF. The acute toxicity of DCF towards Aliivibrio fischeri gradually decreased with increasing treatment time.


Asunto(s)
Óxido Ferrosoférrico , Nanocompuestos , Diclofenaco , Adsorción , Especies Reactivas de Oxígeno
3.
Environ Monit Assess ; 195(12): 1465, 2023 Nov 14.
Artículo en Inglés | MEDLINE | ID: mdl-37957404

RESUMEN

Gongji Stream flows into Lake Uiam, a potable water source for the capital region of Chuncheon, South Korea. Algal blooms often occur downstream of the Gongji stream in combination with drastic flow rate variations. Downstream water quality may also be affected by Yaksa stream. Yaksa stream joins Gongji stream before it reaches Uiam Lake, which is a drinking water source for the city. Limited data exists on the Yaksa stream water quality. Therefore, water quality parameters (pH, electrical conductivity (EC), biological oxygen demand (BOD), total nitrogen (T-N), total phosphorous (T-P), chlorophyll-a (Chl-a), total coliforms, and Escherichia coli (E. coli) concentration) were sampled from Gongji (at sites GJ1 and GJ2) and Yaksa (at sites YS1 and YS2) streams from May to September, 2022. The results revealed the overall water quality of both streams was good (BOD = 0.27-3.66 mg/L; TP = 0.003-0.074 mg/L), except on August 3. On August 3, the concentrations of BOD, TP, total coliforms, and E. coli were elevated, with the highest concentrations in samples from GJ2. The recent heavy rainfall potentially caused sewage inflows near GJ2. The correlation analysis revealed positive linear relationships in the 1-day cumulative precipitation with BOD (r = 0.503), total coliforms (r = 0.547), and TP (r = 0.814). The Yaksa stream may be an Anabaena sp. source, which contaminated samples from YS1, YS2, and GJ2, but not at GJ1 (upstream of the tributary).


Asunto(s)
Monitoreo del Ambiente , Calidad del Agua , Estaciones del Año , Escherichia coli , Clorofila A/análisis , Fósforo/análisis
4.
Materials (Basel) ; 16(13)2023 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-37444981

RESUMEN

As semiconductor chips have been integrated to enhance their performance, a low-dielectric-constant material, SiCOH, with a relative dielectric constant k ≤ 3.5 has been widely used as an intermetal dielectric (IMD) material in multilevel interconnects to reduce the resistance-capacitance delay. Plasma-polymerized tetrakis(trimethylsilyoxy)silane (ppTTMSS) films were created using capacitively coupled plasma-enhanced chemical vapor deposition with deposition plasma powers ranging from 20 to 60 W and then etched in CF4/O2 plasma using reactive ion etching. No significant changes were observed in the Fourier-transform infrared spectroscopy (FTIR) spectra of the ppTTMSS films after etching. The refractive index and dielectric constant were also maintained. As the deposition plasma power increased, the hardness and elastic modulus increased with increasing ppTTMSS film density. The X-ray photoelectron spectroscopy (XPS) spectra analysis showed that the oxygen concentration increased but the carbon concentration decreased after etching owing to the reaction between the plasma and film surface. With an increase in the deposition plasma power, the hardness and elastic modulus increased from 1.06 to 8.56 GPa and from 6.16 to 52.45 GPa. This result satisfies the hardness and elastic modulus exceeding 0.7 and 5.0 GPa, which are required for the chemical-mechanical polishing process in semiconductor multilevel interconnects. Furthermore, all leakage-current densities of the as-deposited and etched ppTTMSS films were measured below 10-6 A/cm2 at 1 MV/cm, which is generally acceptable for IMD materials.

5.
Sci Total Environ ; 880: 163290, 2023 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-37030274

RESUMEN

Microplastics (MP) have been recently identified as emerging water contaminants in worldwide. Owing to its physicochemical properties, MP have been considered as a vector of other micropollutants and may affect their fate and ecological toxicity in the water environment. In this study, triclosan (TCS), which is a widely-used bactericide, and three frequently found types of MP (PS-MP, PE-MP, and PP-MP) were investigated. The adsorption behavior of TCS on MP was investigated by the effect of reaction time, initial concentration of TCS, and other water chemistry factors. Elovich model and Temkin model are the most fitted well with kinetics and adsorption isotherms, respectively. The maximum TCS adsorption capacities were calculated for PS-MP (9.36 mg/g), PP-MP (8.23 mg/g), and PE-MP (6.47 mg/g). PS-MP had higher affinity to TCS owing to hydrophobic and π-π interaction. The TCS adsorption on PS-MP was inhibited by decreasing concentrations of cations, and increasing concentration of anion, pH, and NOM concentration. At pH 10, only 0.22 mg/g of adsorption capacity was obtained because of the isoelectric point (3.75) of PS-MP and pKa (7.9) of TCS. And almost no TCS adsorption occurred at NOM concentration of 11.8 mg/L. Only PS-MP had no acute toxic effect on D. magna, whereas TCS showed acute toxicity (EC50,24h of TCS = 0.36 ± 0.4 mg/L). Although survival rate increased when TCS with PS-MP due to lower the TCS concentration in solution via adsorption, PS-MP was observed in intestine and body surface of D. magna. Our findings can contribute to understanding the combined potential effects of MP fragment and TCS to aquatic biota.


Asunto(s)
Triclosán , Contaminantes Químicos del Agua , Microplásticos/química , Triclosán/toxicidad , Triclosán/química , Plásticos/química , Adsorción , Antibacterianos , Contaminantes Químicos del Agua/análisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...