Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
J Colloid Interface Sci ; 650(Pt A): 541-552, 2023 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-37423181

RESUMEN

HYPOTHESIS: Biomaterials such as collagen and tannic acid (TA) particles are of interest in the development of advanced hybrid biobased systems due to their beneficial therapeutic functionalities and distinctive structural properties. The presence of numerous functional groups makes both TA and collagen pH responsive, enabling them to interact via non-covalent interactions and offer tunable macroscopic properties. EXPERIMENT: The effect of pH on the interactions between collagen and TA particles is explored by adding TA particles at physiological pH to collagen at both acidic and neutral pH. Rheology, isothermal titration calorimetry (ITC), turbidimetric analysis and quartz crystal microbalance with dissipation monitoring (QCM-D) are used to study the effects. FINDINGS: Rheology results show significant increase in elastic modulus with an increase in collagen concentration. However, TA particles at physiological pH provide stronger mechanical reinforcement to collagen at pH 4 than collagen at pH 7 due to the formation of a higher extent of electrostatic interaction and hydrogen bonding. ITC results confirm this hypothesis, with larger changes in enthalpy, |ΔH|, observed when collagen is at acidic pH and |ΔH| > |TΔS| indicating enthalpy-driven collagen-TA interactions. Turbidimetric analysis and QCM-D help to identify structural differences of the collagen-TA complexes and their formation at both pH conditions.


Asunto(s)
Colágeno , Termodinámica , Concentración de Iones de Hidrógeno , Reología
2.
J Phys Chem B ; 125(36): 10312-10323, 2021 09 16.
Artículo en Inglés | MEDLINE | ID: mdl-34482688

RESUMEN

We study the interfacial energy parameters that explain the reinforcement of polymers with nanodiamond (ND) and the development of mechanical strength of electrospun ND-reinforced composites. Thermodynamic parameters such as the wettability ratio, work of spreading and dispersion/aggregation transition are used to derive a criterion to predict the dispersibility of carboxylated ND (cND) in polymeric matrices. Such a criterion for dispersion (Dc) is applied to electrospun cND-containing poly(vinyl alcohol) (PVA), polyacrylonitrile (PAN), and polystyrene (PS) fiber composites. The shifts in glass transition temperature (ΔTg), used as a measure of polymer/cND interfacial interactions and hence the reinforcement capability of cNDs, reveal a direct correlation with the thermodynamic parameter Dc in the order of PAN < PS < PVA. Contrary to expectation, however, the tensile strength of the electrospun fibers correlates with the Dc and ΔTg only for semicrystalline polymers (PAN < PVA) while the amorphous PS displays a maximum reinforcement with cND. Such conflicting results reveal a synergy that is not captured by thermodynamic considerations alone but also factor in the contributions of polymer/cND interface stress transfer efficiency. Our findings open the possibility for tailoring the interfacial interactions in polymer-ND fiber composites to achieve maximum mechanical reinforcement.


Asunto(s)
Nanodiamantes , Vidrio , Polímeros , Alcohol Polivinílico , Resistencia a la Tracción
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...