Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Front Radiol ; 4: 1327406, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39175870

RESUMEN

Background: Cardiac magnetic resonance is a useful clinical tool to identify late gadolinium enhancement in heart failure patients with implantable electronic devices. Identification of LGE in patients with CIED is limited by artifact, which can be improved with a wide band radiofrequency pulse sequence. Objective: The authors hypothesize that image quality of LGE images produced using wide-band pulse sequence in patients with devices is comparable to image quality produced using standard LGE sequences in patients without devices. Methods: Two independent readers reviewed LGE images of 16 patients with CIED and 7 patients without intracardiac devices to assess for image quality, device-related artifact, and presence of LGE using the American Society of Echocardiography/American Heart Association 17 segment model of the heart on a 4-point Likert scale. The mean and standard deviation for image quality and artifact rating were determined. Inter-observer reliability was determined by calculating Cohen's kappa coefficient. Statistical significance was determined by T-test as a p {less than or equal to} 0.05 with a 95% confidence interval. Results: All patients underwent CMR without any adverse events. Overall IQ of WB LGE images was significantly better in patients with devices compared to standard LGE in patients without devices (p = 0.001) with reduction in overall artifact rating (p = 0.05). Conclusion: Our study suggests wide-band pulse sequence for LGE can be applied safely to heart failure patients with devices in detection of LV myocardial scar while maintaining image quality, reducing artifact, and following routine imaging protocol after intravenous gadolinium contrast administration.

2.
J Cardiovasc Magn Reson ; : 101085, 2024 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-39154806

RESUMEN

BACKGROUND: Quantitative stress cardiac magnetic resonance (CMR) can be performed using the dual sequence (DS) technique or dual bolus (DB) method. It is unknown if DS and DB produce similar results for myocardial blood flow (MBF) and myocardial perfusion reserve (MPR). The study objective is to investigate if there are any differences between DB and DS derived MBF and MPR. METHODS: Retrospective observational study with 168 patients underwent stress CMR. Dual bolus and dual sequence methods were simultaneously performed on each patient on the same day. Global and segmental stress MBF and rest MBF values were collected. RESULTS: Using Bland-Altman analysis, segmental and global stress MBF values were higher in DB than DS (0.22 + 0.60ml/g/min, p<0.001 and 0.20 + 0.48ml/g/min, p=0.005 respectively) with strong correlation (r = 0.81, p < 0.001 for segmental and r = 0.82, p < 0.001 for global). In rest MBF, segmental and global DB values were higher than by DS (0.15 + 0.51ml/g/min, p<0.001 and 0.14 + 0.36ml/g/min, p=0.011 respectively) with strong correlation (r = 0.81, p < 0.001 and r = 0.77, p < 0.001). Mean difference between MPR by DB and DS was -0.02 + 0.68ml/g/min (p=0.758) for segmental values and -0.01 + 0.49ml/g/min (p=0.773) for global values. MPR values correlated strongly as well in both segmental and global, both (r = 0.74, p < 0.001) and (r = 0.75, p < 0.001) respectively. CONCLUSIONS: There is very good correlation between DB and DS derived MBF and MPR values. However, there are significant differences between DB and DS derived global stress and rest MBF. Whilst MPR values did not show statistically significant differences between DB and DS methods.

3.
J Cardiovasc Magn Reson ; 26(2): 101069, 2024 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-39079600

RESUMEN

BACKGROUND: Cardiovascular magnetic resonance (CMR) cine imaging is still limited by long acquisition times. This study evaluated the clinical utility of an accelerated two-dimensional (2D) cine sequence with deep learning reconstruction (Sonic DL) to decrease acquisition time without compromising quantitative volumetry or image quality. METHODS: A sub-study using 16 participants was performed using Sonic DL at two different acceleration factors (8× and 12×). Quantitative left-ventricular volumetry, function, and mass measurements were compared between the two acceleration factors against a standard cine method. Following this sub-study, 108 participants were prospectively recruited and imaged using a standard cine method and the Sonic DL method with the acceleration factor that more closely matched the reference method. Two experienced clinical readers rated images based on their diagnostic utility and performed all image contouring. Quantitative contrast difference and endocardial border sharpness were also assessed. Left- and right-ventricular volumetry, left-ventricular mass, and myocardial strain measurements were compared between cine methods using Bland-Altman plots, Pearson's correlation, and paired t-tests. Comparative analysis of image quality was measured using Wilcoxon-signed-rank tests and visualized using bar graphs. RESULTS: Sonic DL at an acceleration factor of 8 more closely matched the reference cine method. There were no significant differences found across left ventricular volumetry, function, or mass measurements. In contrast, an acceleration factor of 12 resulted in a 6% (5.51/90.16) reduction of measured ejection fraction when compared to the standard cine method and a 4% (4.32/88.98) reduction of measured ejection fraction when compared to Sonic DL at an acceleration factor of 8. Thus, Sonic DL at an acceleration factor of 8 was chosen for downstream analysis. In the larger cohort, this accelerated cine sequence was successfully performed in all participants and significantly reduced the acquisition time of cine images compared to the standard 2D method (reduction of 37% (5.98/16) p < 0.0001). Diagnostic image quality ratings and quantitative image quality evaluations were statistically not different between the two methods (p > 0.05). Left- and right-ventricular volumetry and circumferential and radial strain were also similar between methods (p > 0.05) but left-ventricular mass and longitudinal strain were over-estimated using the proposed accelerated cine method (mass over-estimated by 3.36 g/m2, p < 0.0001; longitudinal strain over-estimated by 1.97%, p = 0.001). CONCLUSION: This study found that an accelerated 2D cine method with DL reconstruction at an acceleration factor of 8 can reduce CMR cine acquisition time by 37% (5.98/16) without significantly affecting volumetry or image quality. Given the increase of scan time efficiency, this undersampled acquisition method using deep learning reconstruction should be considered for routine clinical CMR.

4.
JACC Adv ; 3(3)2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38433786

RESUMEN

BACKGROUND: Severe COVID-19 infection is known to alter myocardial perfusion through its effects on the endothelium and microvasculature. However, the majority of patients with COVID-19 infection experience only mild symptoms, and it is unknown if their myocardial perfusion is altered after infection. OBJECTIVES: The authors aimed to determine if there are abnormalities in myocardial blood flow (MBF), as measured by stress cardiac magnetic resonance (CMR), in individuals after a mild COVID-19 infection. METHODS: We conducted a prospective, comparative study of individuals who had a prior mild COVID-19 infection (n = 30) and matched controls (n = 26) using stress CMR. Stress and rest myocardial blood flow (sMBF, rMBF) were quantified using the dual sequence technique. Myocardial perfusion reserve was calculated as sMBF/rMBF. Unpaired t-tests were used to test differences between the groups. RESULTS: The median time interval between COVID-19 infection and CMR was 5.6 (IQR: 4-8) months. No patients with the COVID-19 infection required hospitalization. Symptoms including chest pain, shortness of breath, syncope, and palpitations were more commonly present in the group with prior COVID-19 infection than in the control group (57% vs 7%, P < 0.001). No significant differences in rMBF (1.08 ± 0.27 mL/g/min vs 0.97 ± 0.29 mL/g/min, P = 0.16), sMBF (3.08 ± 0.79 mL/g/min vs 3.06 ± 0.89 mL/g/min, P = 0.91), or myocardial perfusion reserve (2.95 ± 0.90 vs 3.39 ± 1.25, P = 0.13) were observed between the groups. CONCLUSIONS: This study suggests that there are no significant abnormalities in rest or stress myocardial perfusion, and thus microvascular function, in individuals after mild COVID-19 infection.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...