Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
BMC Genomics ; 23(1): 584, 2022 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-35962326

RESUMEN

BACKGROUND: Mitochondrial genomes are the most sequenced genomes after bacterial and fungal genomic DNA. However, little information on mitogenomes is available for multiple metazoan taxa, such as Culicoides, a globally distributed, megadiverse genus containing 1,347 species. AIM:  Generating novel mitogenomic information from single Culicoides sonorensis and C. biguttatus specimens, comparing available mitogenome mapping and de novo assembly tools, and identifying the best performing strategy and tools for Culicoides species. RESULTS: We present two novel and fully annotated mitochondrial haplotypes for two Culicoides species, C. sonorensis and C. biguttatus. We also annotated or re-annotated the only available reference mitogenome for C. sonorensis and C. arakawae. All species present a high similarity in mitogenome organization. The general gene arrangement for all Culicoides species was identical to the ancestral insect mitochondrial genome. Only short spacers were found in C. sonorensis (up to 30 bp), contrary to C. biguttatus (up to 114 bp). The mitochondrial genes ATP8, NAD2, NAD6, and LSU rRNA exhibited the highest nucleotide diversity and pairwise interspecific p genetic distance, suggesting that these genes might be suitable and complementary molecular barcodes for Culicoides identification in addition to the commonly utilized COI gene. We observed performance differences between the compared mitogenome generation strategies. The mapping strategy outperformed the de novo assembly strategy, but mapping results were partially biased in the absence of species-specific reference mitogenome. Among the utilized tools, BWA performed best for C. sonorensis while SPAdes, MEGAHIT, and MitoZ were among the best for C. biguttatus. The best-performing mitogenome annotator was MITOS2. Additionally, we were able to recover exogenous mitochondrial DNA from Bos taurus (biting midges host) from a C. biguttatus blood meal sample. CONCLUSIONS: Two novel annotated mitogenome haplotypes for C. sonorensis and C. biguttatus using High-Throughput Sequencing are presented. Current results are useful as the baseline for mitogenome reconstruction of the remaining Culicoides species from single specimens to HTS and genome annotation. Mapping to a species-specific reference mitogenome generated better results for Culicoides mitochondrial genome reconstruction than de novo assembly, while de novo assembly resulted better in the absence of a closely related reference mitogenome. These results have direct implications for molecular-based identification of these vectors of human and zoonotic diseases, setting the basis for using the whole mitochondrial genome as a marker in Culicoides identification.


Asunto(s)
Ceratopogonidae , Genoma Mitocondrial , Animales , Benchmarking , Bovinos , Ceratopogonidae/genética , Genes Mitocondriales , Genoma Mitocondrial/genética , Humanos , Insectos Vectores/genética
2.
Insects ; 12(5)2021 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-33946322

RESUMEN

eDNA metabarcoding is an effective molecular-based identification method for the biosurveillance of flighted insects. An eDNA surveillance approach maintains specimens for secondary morphological identification useful for regulatory applications. This study identified Culicoides species using eDNA metabarcoding and compared these results to morphological identifications of trapped specimens. Insects were collected using ultraviolet (UV) lighted fan traps containing a saturated salt (NaCl) solution from two locations in Guelph, Ontario, Canada. There were forty-two Culicoides specimens collected in total. Molecular identification detected four species, C. biguttatus, C. stellifer, C. obsoletus, and C. mulrennani. Using morphological identification, two out of these four taxonomic ranks were confirmed at the species level (C. biguttatus and C. stellifer) and one was confirmed at the subgenus level (Avaritia [C. obsoletus]). No molecular detection of Culicoides species occurred in traps with an abundance of less than three individuals per taxon. The inconsistency in identifying Culicoides specimens to the species level punctuates the need for curated DNA reference libraries for Culicoides. In conclusion, the saturated salt (NaCl) solution preserved the Culicoides' morphological characteristics and the eDNA.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...