Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Commun Biol ; 7(1): 424, 2024 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-38589507

RESUMEN

The cellular and molecular mechanisms governing sexual reproduction are conserved across eukaryotes. Nevertheless, hybridization can disrupt these mechanisms, leading to asexual reproduction, often accompanied by polyploidy. In this study, we investigate how ploidy level and ratio of parental genomes in hybrids affect their reproductive mode. We analyze the gametogenesis of sexual species and their diploid and triploid hybrids from the freshwater fish family Cobitidae, using newly developed cytogenetic markers. We find that diploid hybrid females possess oogonia and oocytes with original (diploid) and duplicated (tetraploid) ploidy. Diploid oocytes cannot progress beyond pachytene due to aberrant pairing. However, tetraploid oocytes, which emerge after premeiotic genome endoreplication, exhibit normal pairing and result in diploid gametes. Triploid hybrid females possess diploid, triploid, and haploid oogonia and oocytes. Triploid and haploid oocytes cannot progress beyond pachytene checkpoint due to aberrant chromosome pairing, while diploid oocytes have normal pairing in meiosis, resulting in haploid gametes. Diploid oocytes emerge after premeiotic elimination of a single-copied genome. Triploid hybrid males are sterile due to aberrant pairing and the failure of chromosomal segregation during meiotic divisions. Thus, changes in ploidy and genome dosage may lead to cyclical alteration of gametogenic pathways in hybrids.


Asunto(s)
Cipriniformes , Triploidía , Animales , Femenino , Masculino , Tetraploidía , Gametogénesis , Haploidia , Cipriniformes/genética
2.
Elife ; 122023 11 06.
Artículo en Inglés | MEDLINE | ID: mdl-37930936

RESUMEN

Asexual reproduction can be triggered by interspecific hybridization, but its emergence is supposedly rare, relying on exceptional combinations of suitable genomes. To examine how genomic and karyotype divergence between parental lineages affect the incidence of asexual gametogenesis, we experimentally hybridized fishes (Cobitidae) across a broad phylogenetic spectrum, assessed by whole exome data. Gametogenic pathways generally followed a continuum from sexual reproduction in hybrids between closely related evolutionary lineages to sterile or inviable crosses between distant lineages. However, most crosses resulted in a combination of sterile males and asexually reproducing females. Their gametes usually experienced problems in chromosome pairing, but females also produced a certain proportion of oocytes with premeiotically duplicated genomes, enabling their development into clonal eggs. Interspecific hybridization may thus commonly affect cell cycles in a specific way, allowing the formation of unreduced oocytes. The emergence of asexual gametogenesis appears tightly linked to hybrid sterility and constitutes an inherent part of the extended speciation continuum.


Asunto(s)
Infertilidad , Reproducción Asexuada , Femenino , Masculino , Humanos , Filogenia , Cariotipo , Reproducción Asexuada/genética , Hibridación Genética
3.
Ecol Evol ; 13(10): e10522, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37780083

RESUMEN

Sexual reproduction is the primary mode of reproduction in eukaryotes, but some organisms have evolved deviations from classical sex and switched to asexuality. These asexual lineages have sometimes been viewed as evolutionary dead ends, but recent research has revealed their importance in many areas of general biology. Our review explores the understudied, yet important mechanisms by which sperm-dependent asexuals that produce non-recombined gametes but rely on their fertilization, can have a significant impact on the evolution of coexisting sexual species and ecosystems. These impacts are concentrated around three major fields. Firstly, sperm-dependent asexuals can potentially impact the gene pool of coexisting sexual species by either restricting their population sizes or by providing bridges for interspecific gene flow whose type and consequences substantially differ from gene flow mechanisms expected under sexual reproduction. Secondly, they may impact on sexuals' diversification rates either directly, by serving as stepping-stones in speciation, or indirectly, by promoting the formation of pre- and postzygotic reproduction barriers among nascent species. Thirdly, they can potentially impact on spatial distribution of species, via direct or indirect (apparent) types of competition and Allee effects. For each such mechanism, we provide empirical examples of how natural sperm-dependent asexuals impact the evolution of their sexual counterparts. In particular, we highlight that these broad effects may last beyond the tenure of the individual asexual lineages causing them, which challenges the traditional perception that asexual lineages are short-lived evolutionary dead ends and minor sideshows. Our review also proposes new research directions to incorporate the aforementioned impacts of sperm-dependent asexuals. These research directions will ultimately enhance our understanding of the evolution of genomes and biological interactions in general.

4.
Mol Ecol Resour ; 23(6): 1348-1360, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37122140

RESUMEN

As whole-genome sequencing has become pervasive, some have suggested that reduced genomic representation approaches, for example, sequence capture, are becoming obsolete. In the present study, we argue that these techniques still provide excellent tools in terms of price and quality of data as well as in their ability to provide markers with specific features, as required, for example, in phylogenomics. A potential drawback of the wide-scale application of reduced representation approaches could be their drop in efficiency with increasing phylogenetic distance from the reference species. While some studies have focused on the degree and performance of reduced representation techniques in such situations, to our knowledge, none of them evaluated their applicability to inter-specific hybrids and polyploids. This highlights a significant gap in current knowledge since there is increasing evidence for the frequent occurrence of natural hybrids and polyploids, as well as for the major importance of both phenomena in evolution. The main aim of the present study was to carry out a thorough validation of SEQcap applicability to (1) a set of non-model taxa with a wide range of phylogenetic relatedness and (2) inter-specific hybrids of various ploidies and genomic compositions. Considering the latter point, we especially focused on mechanisms causing allelic bias and consequent allelic dropout, as these could have confounding effects with respect to the evolutionary genomic dynamics of hybrids, especially in asexuals, which virtually reproduce as a frozen F1 generation.


Asunto(s)
Genoma , Poliploidía , Humanos , Filogenia , Ploidias , Genómica
5.
BMC Biol ; 21(1): 72, 2023 04 07.
Artículo en Inglés | MEDLINE | ID: mdl-37024917

RESUMEN

BACKGROUND: Bdelloid rotifers are micro-invertebrates distributed worldwide, from temperate latitudes to the most extreme areas of the planet like Antarctica or the Atacama Desert. They have colonized any habitat where liquid water is temporarily available, including terrestrial environments such as soils, mosses, and lichens, tolerating desiccation and other types of stress such as high doses of ionizing radiation (IR). It was hypothesized that bdelloid desiccation and radiation resistance may be attributed to their potential ability to repair DNA double-strand breaks (DSBs). Here, these properties are investigated and compared among nine bdelloid species collected from both mild and harsh habitats, addressing the correlation between the ability of bdelloid rotifers to survive desiccation and their capacity to repair massive DNA breakage in a phylogenetically explicit context. Our research includes both specimens isolated from habitats that experience frequent desiccation (at least 1 time per generation), and individuals sampled from habitats that rarely or never experienced desiccation. RESULTS: Our analysis reveals that DNA repair prevails in somatic cells of both desiccation-tolerant and desiccation-sensitive bdelloid species after exposure to X-ray radiation. Species belonging to both categories are able to withstand high doses of ionizing radiation, up to 1000 Gy, without experiencing any negative effects on their survival. However, the fertility of two desiccation-sensitive species, Rotaria macrura and Rotaria rotatoria, was more severely impacted by low doses of radiation than that of desiccation-resistant species. Surprisingly, the radioresistance of desiccation-resistant species is not related to features of their original habitat. Indeed, bdelloids isolated from Atacama Desert or Antarctica were not characterized by a higher radioresistance than species found in more temperate environments. CONCLUSIONS: Tolerance to desiccation and radiation are supported as ancestral features of bdelloid rotifers, with a group of species of the genus Rotaria having lost this trait after colonizing permanent water habitats. Together, our results provide a comprehensive overview of the evolution of desiccation and radiation resistance among bdelloid rotifers.


Asunto(s)
Desecación , Rotíferos , Humanos , Animales , Rotíferos/genética , Roturas del ADN de Doble Cadena , Reparación del ADN , Agua
6.
Chromosome Res ; 30(4): 443-457, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36459298

RESUMEN

Unisexual reproduction, which generates clonal offspring, is an alternative strategy to sexual breeding and occurs even in vertebrates. A wide range of non-sexual reproductive modes have been described, and one of the least understood questions is how such pathways emerged and how they mechanistically proceed. The Amazon molly, Poecilia formosa, needs sperm from males of related species to trigger the parthenogenetic development of diploid eggs. However, the mechanism, of how the unreduced female gametes are produced, remains unclear. Cytological analyses revealed that the chromosomes of primary oocytes initiate pachytene but do not proceed to bivalent formation and meiotic crossovers. Comparing ovary transcriptomes of P. formosa and its sexual parental species revealed expression levels of meiosis-specific genes deviating from P. mexicana but not from P. latipinna. Furthermore, several meiosis genes show biased expression towards one of the two alleles from the parental genomes. We infer from our data that in the Amazon molly diploid oocytes are generated by apomixis due to a failure in the synapsis of homologous chromosomes. The fact that this failure is not reflected in the differential expression of known meiosis genes suggests the underlying molecular mechanism may be dysregulation on the protein level or misexpression of a so far unknown meiosis gene, and/or hybrid dysgenesis because of compromised interaction of proteins from diverged genomes.


Asunto(s)
Poecilia , Animales , Femenino , Masculino , Poecilia/genética , Taiwán , Semen , Transcriptoma , Meiosis
7.
Biol Reprod ; 107(2): 446-457, 2022 08 09.
Artículo en Inglés | MEDLINE | ID: mdl-35416937

RESUMEN

Interspecific hybridization may trigger the transition from sexual reproduction to asexuality, but mechanistic reasons for such a change in a hybrid's reproduction are poorly understood. Gametogenesis of many asexual hybrids involves a stage of premeiotic endoreplication (PMER), when gonial cells duplicate chromosomes and subsequent meiotic divisions involve bivalents between identical copies, leading to production of clonal gametes. Here, we investigated the triggers of PMER and whether its induction is linked to intrinsic stimuli within a hybrid's gonial cells or whether it is regulated by the surrounding gonadal tissue. We investigated gametogenesis in the Cobitis taenia hybrid complex, which involves sexually reproducing species (Cobitis elongatoides and C. taenia) as well as their hybrids, where females reproduce clonally via PMER while males are sterile. We transplanted spermatogonial stem cells (SSCs) from C. elongatoides and triploid hybrid males into embryos of sexual species and of asexual hybrid females, respectively, and observed their development in an allospecific gonadal environment. Sexual SSCs underwent regular meiosis and produced normally reduced gametes when transplanted into clonal females. On the other hand, the hybrid's SSCs lead to sterility when transplanted into sexual males but maintained their ability to undergo asexual development (PMER) and production of clonal eggs, when transplanted into sexual females. This suggests that asexual gametogenesis is under complex control when somatic gonadal tissue indirectly affects the execution of asexual development by determining the sexual differentiation of stem cells and once such cells develop to female phenotypes, hybrid germ cells trigger the PMER from their intrinsic signals.


Asunto(s)
Cipriniformes , Diferenciación Sexual , Animales , Cipriniformes/genética , Diploidia , Femenino , Gametogénesis , Células Germinativas , Masculino
8.
Chromosoma ; 131(1-2): 77-86, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35389062

RESUMEN

Passerine birds have a supernumerary chromosome in their germ cells called the germline-restricted chromosome (GRC). The GRC was first discovered more than two decades ago in zebra finch but recent studies have suggested that it is likely present in all passerines, the most species rich avian order, encompassing more than half of all modern bird species. Despite its wide taxonomic distribution, studies on this chromosome are still scarce and limited to a few species. Here, we cytogenetically analyzed the GRC in five closely related estrildid finch species of the genus Lonchura. We show that the GRC varies enormously in size, ranging from a tiny micro-chromosome to one of the largest macro-chromosomes in the cell, not only among recently diverged species but also within species and sometimes even between germ cells of a single individual. In Lonchura atricapilla, we also observed variation in GRC copy number among male germ cells of a single individual. Finally, our analysis of hybrids between two Lonchura species with noticeably different GRC size directly supported maternal inheritance of the GRC. Our results reveal the extraordinarily dynamic nature of the GRC, which might be caused by frequent gains and losses of sequences on this chromosome leading to substantial differences in genetic composition of the GRC between and even within species. Such differences might theoretically contribute to reproductive isolation between species and thus accelerate the speciation rate of passerine birds compared to other bird lineages.


Asunto(s)
Pinzones , Passeriformes , Animales , Cromosomas/genética , Femenino , Pinzones/genética , Células Germinativas , Masculino , Passeriformes/genética
9.
Sci Total Environ ; 814: 152656, 2022 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-34954174

RESUMEN

This study is a first survey of the occurrence of artificial (137Cs, 241Am, 207Bi, Pu isotopes) and natural (210Pb, 228Ac, 214Bi, 40K) radionuclides in Norwegian cryoconite. Cryoconite samples were collected before (12 samples) and after (5 samples) a rainfall event, after which 7 cryoconite holes dissapeared. The concentrations of radionuclides in cryoconite samples from the Blåisen Glacier are compared with data from the Arctic and Alpine glaciers. Cryoconite samples from the studied glacier had extremely high activity concentrations of 137Cs, 241Am, 207Bi and 239+240Pu (up to 25,000 Bq/kg, 58 Bq/kg, 13 Bq/kg and 131 Bq/kg, respectively) and also high concentrations of organic matter (OM), comparing to other Scandinavian and Arctic glaciers, reaching up to ~40% of total mass. The outstandingly high concentrations of 137Cs, 241Am, Pu isotopes, and 207Bi on the Blåisen Glacier are primarily related to bioaccumulation of radionuclides in organic-rich cryoconite and might be enhanced by additional transfers of contamination from the tundra by lemmings during their population peaks. The presumed influence of intense rainfall on radionuclide concentrations in the cryoconite was not confirmed.


Asunto(s)
Cubierta de Hielo , Radiactividad , Regiones Árticas
10.
Int J Mol Sci ; 22(22)2021 Nov 09.
Artículo en Inglés | MEDLINE | ID: mdl-34830012

RESUMEN

The transition from sexual reproduction to asexuality is often triggered by hybridization. The gametogenesis of many hybrid asexuals involves premeiotic genome endoreplication leading to bypass hybrid sterility and forming clonal gametes. However, it is still not clear when endoreplication occurs, how many gonial cells it affects and whether its rate differs among clonal lineages. Here, we investigated meiotic and premeiotic cells of diploid and triploid hybrids of spined loaches (Cypriniformes: Cobitis) that reproduce by gynogenesis. We found that in naturally and experimentally produced F1 hybrids asexuality is achieved by genome endoreplication, which occurs in gonocytes just before entering meiosis or, rarely, one or a few divisions before meiosis. However, genome endoreplication was observed only in a minor fraction of the hybrid's gonocytes, while the vast majority of gonocytes were unable to duplicate their genomes and consequently could not proceed beyond pachytene due to defects in bivalent formation. We also noted that the rate of endoreplication was significantly higher among gonocytes of hybrids from natural clones than of experimentally produced F1 hybrids. Thus, asexuality and hybrid sterility are intimately related phenomena and the transition from sexual reproduction to asexuality must overcome significant problems with genome incompatibilities with a possible impact on reproductive potential.


Asunto(s)
Gametogénesis/genética , Reproducción Asexuada/genética , Reproducción/genética , Taenia/genética , Animales , Cruzamientos Genéticos , Cipriniformes/genética , Cipriniformes/crecimiento & desarrollo , Hibridación Genética , Meiosis/genética , Taenia/crecimiento & desarrollo
11.
Mol Biol Evol ; 38(12): 5255-5274, 2021 12 09.
Artículo en Inglés | MEDLINE | ID: mdl-34410426

RESUMEN

Hybridization and genome duplication have played crucial roles in the evolution of many animal and plant taxa. The subgenomes of parental species undergo considerable changes in hybrids and polyploids, which often selectively eliminate segments of one subgenome. However, the mechanisms underlying these changes are not well understood, particularly when the hybridization is linked with asexual reproduction that opens up unexpected evolutionary pathways. To elucidate this problem, we compared published cytogenetic and RNAseq data with exome sequences of asexual diploid and polyploid hybrids between three fish species; Cobitis elongatoides, C. taenia, and C. tanaitica. Clonal genomes remained generally static at chromosome-scale levels but their heterozygosity gradually deteriorated at the level of individual genes owing to allelic deletions and conversions. Interestingly, the impact of both processes varies among animals and genomic regions depending on ploidy level and the properties of affected genes. Namely, polyploids were more tolerant to deletions than diploid asexuals where conversions prevailed, and genomic restructuring events accumulated preferentially in genes characterized by high transcription levels and GC-content, strong purifying selection and specific functions like interacting with intracellular membranes. Although hybrids were phenotypically more similar to C. taenia, we found that they preferentially retained C. elongatoides alleles. This demonstrates that favored subgenome is not necessarily the transcriptionally dominant one. This study demonstrated that subgenomes in asexual hybrids and polyploids evolve under a complex interplay of selection and several molecular mechanisms whose efficiency depends on the organism's ploidy level, as well as functional properties and parental ancestry of the genomic region.


Asunto(s)
Cipriniformes , Poliploidía , Animales , Cipriniformes/genética , Diploidia , Evolución Molecular , Genoma de Planta , Hibridación Genética , Pérdida de Heterocigocidad
12.
Philos Trans R Soc Lond B Biol Sci ; 376(1833): 20200103, 2021 09 13.
Artículo en Inglés | MEDLINE | ID: mdl-34304588

RESUMEN

We review knowledge about the roles of sex chromosomes in vertebrate hybridization and speciation, exploring a gradient of divergences with increasing reproductive isolation (speciation continuum). Under early divergence, well-differentiated sex chromosomes in meiotic hybrids may cause Haldane-effects and introgress less easily than autosomes. Undifferentiated sex chromosomes are more susceptible to introgression and form multiple (or new) sex chromosome systems with hardly predictable dominance hierarchies. Under increased divergence, most vertebrates reach complete intrinsic reproductive isolation. Slightly earlier, some hybrids (linked in 'the extended speciation continuum') exhibit aberrant gametogenesis, leading towards female clonality. This facilitates the evolution of various allodiploid and allopolyploid clonal ('asexual') hybrid vertebrates, where 'asexuality' might be a form of intrinsic reproductive isolation. A comprehensive list of 'asexual' hybrid vertebrates shows that they all evolved from parents with divergences that were greater than at the intraspecific level (K2P-distances of greater than 5-22% based on mtDNA). These 'asexual' taxa inherited genetic sex determination by mostly undifferentiated sex chromosomes. Among the few known sex-determining systems in hybrid 'asexuals', female heterogamety (ZW) occurred about twice as often as male heterogamety (XY). We hypothesize that pre-/meiotic aberrations in all-female ZW-hybrids present Haldane-effects promoting their evolution. Understanding the preconditions to produce various clonal or meiotic allopolyploids appears crucial for insights into the evolution of sex, 'asexuality' and polyploidy. This article is part of the theme issue 'Challenging the paradigm in sex chromosome evolution: empirical and theoretical insights with a focus on vertebrates (Part II)'.


Asunto(s)
Especiación Genética , Hibridación Genética , Meiosis , Poliploidía , Cromosomas Sexuales/genética , Vertebrados/genética , Animales
13.
Mol Ecol ; 29(16): 3038-3055, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32627290

RESUMEN

Despite its inherent costs, sexual reproduction is ubiquitous in nature, and the mechanisms to protect it from a competitive displacement by asexuality remain unclear. Popular mutation-based explanations, like the Muller's ratchet and the Kondrashov's hatchet, assume that purifying selection may not halt the accumulation of deleterious mutations in the nonrecombining genomes, ultimately leading to their degeneration. However, empirical evidence is scarce and it remains particularly unclear whether mutational degradation proceeds fast enough to ensure the decay of clonal organisms and to prevent them from outcompeting their sexual counterparts. To test this hypothesis, we jointly analysed the exome sequences and the fitness-related phenotypic traits of the sexually reproducing fish species and their clonal hybrids, whose evolutionary ages ranged from F1 generations to 300 ky. As expected, mutations tended to accumulate in the clonal genomes in a time-dependent manner. However, contrary to the predictions, we found no trend towards increased nonsynonymity of mutations acquired by clones, nor higher radicality of their amino acid substitutions. Moreover, there was no evidence for fitness degeneration in the old clones compared with that in the younger ones. In summary, although an efficacy of purifying selection may still be reduced in the asexual genomes, our data indicate that its efficiency is not drastically decreased. Even the oldest investigated clone was found to be too young to suffer fitness consequences from a mutation accumulation. This suggests that mechanisms other than mutation accumulation may be needed to explain the competitive advantage of sex in the short term.


Asunto(s)
Evolución Biológica , Reproducción , Animales , Emociones , Genoma , Modelos Genéticos , Mutación , Reproducción/genética , Reproducción Asexuada/genética
14.
Genetics ; 215(4): 975-987, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32518062

RESUMEN

Hybrid sterility is a hallmark of speciation, but the underlying molecular mechanisms remain poorly understood. Here, we report that speciation may regularly proceed through a stage at which gene flow is completely interrupted, but hybrid sterility occurs only in male hybrids whereas female hybrids reproduce asexually. We analyzed gametogenic pathways in hybrids between the fish species Cobitis elongatoides and C. taenia, and revealed that male hybrids were sterile owing to extensive asynapsis and crossover reduction among heterospecific chromosomal pairs in their gametes, which was subsequently followed by apoptosis. We found that polyploidization allowed pairing between homologous chromosomes and therefore partially rescued the bivalent formation and crossover rates in triploid hybrid males. However, it was not sufficient to overcome sterility. In contrast, both diploid and triploid hybrid females exhibited premeiotic genome endoreplication, thereby ensuring proper bivalent formation between identical chromosomal copies. This endoreplication ultimately restored female fertility but it simultaneously resulted in the obligate production of clonal gametes, preventing any interspecific gene flow. In conclusion, we demonstrate that the emergence of asexuality can remedy hybrid sterility in a sex-specific manner and contributes to the speciation process.


Asunto(s)
Peces/fisiología , Especiación Genética , Células Híbridas/fisiología , Infertilidad/genética , Meiosis , Partenogénesis , Animales , Evolución Biológica , Cromosomas , Peces/genética , Células Híbridas/citología
15.
Genes (Basel) ; 11(6)2020 06 04.
Artículo en Inglés | MEDLINE | ID: mdl-32512717

RESUMEN

Interspecific hybridization is a powerful evolutionary force. However, the investigation of hybrids requires the application of methodologies that provide efficient and indubitable identification of both parental subgenomes in hybrid individuals. Repetitive DNA, and especially the satellite DNA sequences (satDNA), can rapidly diverge even between closely related species, hence providing a useful tool for cytogenetic investigations of hybrids. Recent progress in whole-genome sequencing (WGS) offers unprecedented possibilities for the development of new tools for species determination, including identification of species-specific satDNA markers. In this study, we focused on spined loaches (Cobitis, Teleostei), a group of fishes with frequent interspecific hybridization. Using the WGS of one species, C. elongatoides, we identified seven satDNA markers, which were mapped by fluorescence in situ hybridization on mitotic and lampbrush chromosomes of C. elongatoides, C. taenia and their triploid hybrids (C. elongatoides × 2C. taenia). Two of these markers were chromosome-specific in both species, one had centromeric localization in multiple chromosomes and four had variable patterns between tested species. Our study provided a novel set of cytogenetic markers for Cobitis species and demonstrated that NGS-based development of satDNA cytogenetic markers may provide a very efficient and easy tool for the investigation of hybrid genomes, cell ploidy, and karyotype evolution.


Asunto(s)
Evolución Clonal/genética , Cipriniformes/genética , ADN Satélite/genética , Reproducción Asexuada/genética , Animales , Hibridación Genética , Hibridación Fluorescente in Situ , Cariotipo , Cariotipificación , Especificidad de la Especie
16.
Mol Biol Evol ; 36(9): 1902-1920, 2019 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-31077330

RESUMEN

Hybridization and polyploidization are important evolutionary processes whose impacts range from the alteration of gene expression and phenotypic variation to the triggering of asexual reproduction. We investigated fishes of the Cobitis taenia-elongatoides hybrid complex, which allowed us to disentangle the direct effects of both processes, due to the co-occurrence of parental species with their diploid and triploid hybrids. Employing morphological, ecological, and RNAseq approaches, we investigated the molecular determinants of hybrid and polyploid forms. In contrast with other studies, hybridization and polyploidy induced relatively very little transgressivity. Instead, Cobitis hybrids appeared intermediate with a clear effect of genomic dosing when triploids expressed higher similarity to the parent contributing two genome sets. This dosage effect was symmetric in the germline (oocyte gene expression), interestingly though, we observed an overall bias toward C. taenia in somatic tissues and traits. At the level of individual genes, expression-level dominance vastly prevailed over additivity or transgressivity. Also, trans-regulation of gene expression was less efficient in diploid hybrids than in triploids, where the expression modulation of homoeologs derived from the "haploid" parent was stronger than those derived from the "diploid" parent. Our findings suggest that the apparent intermediacy of hybrid phenotypes results from the combination of individual genes with dominant expression rather than from simple additivity. The efficiency of cross-talk between trans-regulatory elements further appears dosage dependent. Important effects of polyploidization may thus stem from changes in relative concentrations of trans-regulatory elements and their binding sites between hybridizing genomes. Links between gene regulation and asexuality are discussed.


Asunto(s)
Cipriniformes/genética , Regulación de la Expresión Génica , Hibridación Genética , Poliploidía , Reproducción Asexuada , Animales , Cipriniformes/anatomía & histología , Cipriniformes/metabolismo , Ecosistema , Femenino , Masculino , Fenotipo
17.
Sci Rep ; 9(1): 722, 2019 01 24.
Artículo en Inglés | MEDLINE | ID: mdl-30679449

RESUMEN

Interspecific competition is a fundamental process affecting community structure and evolution of interacting species. Besides direct competition, this process is also mediated by shared enemies, which can change the outcome of competition dramatically. However, previous studies investigating interactions between competing species and their parasites (parasite-mediated competition) completely overlooked the effect of 'sperm' parasites (i.e. sperm-dependent parthenogens or pseudogams) on competition. These organisms originate by interspecific hybridization, produce clonal gametes, but exploit parental species for their own reproduction, being therefore analogous to classical parasites. Here we use the reaction-diffusion model and show that pseudogams alter the outcome of interspecific competition significantly. They may either slow down competitive exclusion of the inferior competitor or even turn the outcome of competition between the species. Asexual organisms may thus have unexpectedly strong impact on community structure, and have more significant evolutionary potential than was previously thought.


Asunto(s)
Evolución Biológica , Conducta Competitiva/fisiología , Reproducción/genética , Conducta Sexual/fisiología , Animales , Femenino , Interacciones Huésped-Parásitos/genética , Masculino , Modelos Biológicos , Espermatozoides/crecimiento & desarrollo , Espermatozoides/microbiología
18.
J Exp Bot ; 70(4): 1255-1265, 2019 02 20.
Artículo en Inglés | MEDLINE | ID: mdl-30649396

RESUMEN

The collet (root-hypocotyl junction) region is an important plant transition zone between soil and atmospheric environments. Despite its crucial importance for plant development, little is known about how this transition zone is specified. Here we document the involvement of the exocyst complex in this process. The exocyst, an octameric tethering complex, participates in secretion and membrane recycling and is central to numerous cellular and developmental processes, such as growth of root hairs, cell expansion, recycling of PIN auxin efflux carriers and many others. We show that dark-grown Arabidopsis mutants deficient in exocyst subunits can form a hair-bearing ectopic collet-like structure above the true collet, morphologically resembling the true collet but also retaining some characteristics of the hypocotyl. The penetrance of this phenotypic defect is significantly influenced by cultivation temperature and carbon source, and is related to a defect in auxin regulation. These observations provide new insights into the regulation of collet region formation and developmental plasticity of the hypocotyl.


Asunto(s)
Proteínas de Arabidopsis/genética , Arabidopsis/crecimiento & desarrollo , Hipocótilo/crecimiento & desarrollo , Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Hipocótilo/genética , Hipocótilo/metabolismo
19.
Biol Sex Differ ; 9(1): 13, 2018 04 02.
Artículo en Inglés | MEDLINE | ID: mdl-29609661

RESUMEN

BACKGROUND: Sexual parasites offer unique insights into the reproduction of unisexual and sexual populations. Because unisexuality is almost exclusively linked to the female sex, most studies addressed host-parasite dynamics in populations where sperm-dependent females dominate. Pelophylax water frogs from Central Europe include hybrids of both sexes, collectively named P. esculentus. They live syntopically with their parental species P. lessonae and/or P. ridibundus. Some hybrid lineages consist of all males providing a chance to understand the origin and perpetuation of a host-parasite (egg-dependent) system compared to sperm-dependent parthenogenesis. METHODS: We focused on P. ridibundus-P. esculentus populations where P. ridibundus of both sexes lives together with only diploid P. esculentus males. Based on 17 microsatellite markers and six allozyme loci, we analyzed (i) the variability of individual genomes, (ii) the reproductive mode(s) of all-male hybrids, and (iii) the genealogical relationships between the hybrid and parental genomes. RESULTS: Our microsatellite data revealed that P. esculentus males bear Mendelian-inherited ridibundus genomes while the lessonae genome represents a single clone. Our data indicate that this clone did not recently originate from adjacent P. lessonae populations, suggesting an older in situ or ex situ origin. CONCLUSIONS: Our results confirm that also males can perpetuate over many generations as the unisexual lineage and successfully compete with P. ridibundus males for eggs provided by P. ridibundus females. Natural persistence of such sex-specific hybrid populations allows to studying the similarities and differences between male and female reproductive parasitism in many biological settings.


Asunto(s)
Ranidae/genética , Animales , Genotipo , Hibridación Genética , Masculino , Repeticiones de Microsatélite , Proteínas de Reptiles/genética
20.
Zootaxa ; 4392(2): 311-328, 2018 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-29690407

RESUMEN

Glaciers and ice sheets are a peculiar biome with characteristic abiotic and biotic components. Mountain glaciers are predicted to decrease their volume and even to melt away within a few decades. Despite the threat of a disappearing biome, the diversity and the role of microscopic animals as consumers at higher trophic levels in the glacial biome still remain largely unknown. In this study, we report data on tardigrades and rotifers found in glacial mosses on Mount Stanley, Uganda, and describe a new tardigrade species. Adropion afroglacialis sp. nov. differs from the most similar species by having granulation on the cuticle, absence of cuticular bars under the claws, and a different macroplacoid length sequence. We also provide a morphological diagnosis for another unknown tardigrade species of the genus Hypsibius. The rotifers belonged to the families Philodinidae and Habrotrochidae. In addition, we discuss the diversity of microinvertebrates and potential role of tardigrades and rotifers on mountain glaciers as top consumers. As for any organism living apparently exclusively in glacial habitats on tropical glaciers, their extinction in the near future is inevitable, possibly before we can even discover their existence.


Asunto(s)
Rotíferos , Tardigrada , Animales , Briófitas , Cubierta de Hielo , Uganda
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA