Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 121(1): e2303423120, 2024 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-38150501

RESUMEN

The ability to efficiently control charge and spin in the cuprate high-temperature superconductors is crucial for fundamental research and underpins technological development. Here, we explore the tunability of magnetism, superconductivity, and crystal structure in the stripe phase of the cuprate La[Formula: see text]Ba[Formula: see text]CuO[Formula: see text], with [Formula: see text] = 0.115 and 0.135, by employing temperature-dependent (down to 400 mK) muon-spin rotation and AC susceptibility, as well as X-ray scattering experiments under compressive uniaxial stress in the CuO[Formula: see text] plane. A sixfold increase of the three-dimensional (3D) superconducting critical temperature [Formula: see text] and a full recovery of the 3D phase coherence is observed in both samples with the application of extremely low uniaxial stress of [Formula: see text]0.1 GPa. This finding demonstrates the removal of the well-known 1/8-anomaly of cuprates by uniaxial stress. On the other hand, the spin-stripe order temperature as well as the magnetic fraction at 400 mK show only a modest decrease under stress. Moreover, the onset temperatures of 3D superconductivity and spin-stripe order are very similar in the large stress regime. However, strain produces an inhomogeneous suppression of the spin-stripe order at elevated temperatures. Namely, a substantial decrease of the magnetic volume fraction and a full suppression of the low-temperature tetragonal structure is found under stress, which is a necessary condition for the development of the 3D superconducting phase with optimal [Formula: see text]. Our results evidence a remarkable cooperation between the long-range static spin-stripe order and the underlying crystalline order with the three-dimensional fully coherent superconductivity. Overall, these results suggest that the stripe- and the SC order may have a common physical mechanism.

2.
Nat Commun ; 14(1): 8239, 2023 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-38086824

RESUMEN

Electrons at the border of localization generate exotic states of matter across all classes of strongly correlated electron materials and many other quantum materials with emergent functionality. Heavy electron metals are a model example, in which magnetic interactions arise from the opposing limits of localized and itinerant electrons. This remarkable duality is intimately related to the emergence of a plethora of novel quantum matter states such as unconventional superconductivity, electronic-nematic states, hidden order and most recently topological states of matter such as topological Kondo insulators and Kondo semimetals and putative chiral superconductors. The outstanding challenge is that the archetypal Kondo lattice model that captures the underlying electronic dichotomy is notoriously difficult to solve for real materials. Here we show, using the prototypical strongly-correlated antiferromagnet CeIn3, that a multi-orbital periodic Anderson model embedded with input from ab initio bandstructure calculations can be reduced to a simple Kondo-Heisenberg model, which captures the magnetic interactions quantitatively. We validate this tractable Hamiltonian via high-resolution neutron spectroscopy that reproduces accurately the magnetic soft modes in CeIn3, which are believed to mediate unconventional superconductivity. Our study paves the way for a quantitative understanding of metallic quantum states such as unconventional superconductivity.

3.
Rev Sci Instrum ; 94(1): 013906, 2023 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-36725613

RESUMEN

We present an in situ uniaxial pressure device optimized for small angle x-ray and neutron scattering experiments at low-temperatures and high magnetic fields. A stepper motor generates force, which is transmitted to the sample via a rod with an integrated transducer that continuously monitors the force. The device has been designed to generate forces up to 200 N in both compressive and tensile configurations, and a feedback control allows operating the system in a continuous-pressure mode as the temperature is changed. The uniaxial pressure device can be used for various instruments and multiple cryostats through simple and exchangeable adapters. It is compatible with multiple sample holders, which can be easily changed depending on the sample properties and the desired experiment and allow rapid sample changes.

4.
Nat Commun ; 13(1): 6129, 2022 Oct 17.
Artículo en Inglés | MEDLINE | ID: mdl-36253344

RESUMEN

Effective models focused on pertinent low-energy degrees of freedom have substantially contributed to our qualitative understanding of quantum materials. An iconic example, the Kondo model, was key to demonstrating that the rich phase diagrams of correlated metals originate from the interplay of localized and itinerant electrons. Modern electronic structure calculations suggest that to achieve quantitative material-specific models, accurate consideration of the crystal field and spin-orbit interactions is imperative. This poses the question of how local high-energy degrees of freedom become incorporated into a collective electronic state. Here, we use resonant inelastic x-ray scattering (RIXS) on CePd3 to clarify the fate of all relevant energy scales. We find that even spin-orbit excited states acquire pronounced momentum-dependence at low temperature-the telltale sign of hybridization with the underlying metallic state. Our results demonstrate how localized electronic degrees of freedom endow correlated metals with new properties, which is critical for a microscopic understanding of superconducting, electronic nematic, and topological states.

5.
Phys Rev Lett ; 128(20): 207002, 2022 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-35657867

RESUMEN

In the cuprates, high-temperature superconductivity, spin-density-wave order, and charge-density-wave (CDW) order are intertwined, and symmetry determination is challenging due to domain formation. We investigated the CDW in the prototypical cuprate La_{1.88}Sr_{0.12}CuO_{4} via x-ray diffraction employing uniaxial pressure as a domain-selective stimulus to establish the unidirectional nature of the CDW unambiguously. A fivefold enhancement of the CDW amplitude is found when homogeneous superconductivity is partially suppressed by magnetic field. This field-induced state provides an ideal search environment for a putative pair-density-wave state.

6.
Nat Commun ; 13(1): 1795, 2022 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-35379813

RESUMEN

Static stripe order is detrimental to superconductivity. Yet, it has been proposed that transverse stripe fluctuations may enhance the inter-stripe Josephson coupling and thus promote superconductivity. Direct experimental studies of stripe dynamics, however, remain difficult. From a strong-coupling perspective, transverse stripe fluctuations are realized in the form of dynamic "kinks"-sideways shifting stripe sections. Here, we show how modest uniaxial pressure tuning reorganizes directional kink alignment. Our starting point is La1.88Sr0.12CuO4 where transverse kink ordering results in a rotation of stripe order away from the crystal axis. Application of mild uniaxial pressure changes the ordering pattern and pins the stripe order to the crystal axis. This reordering occurs at a much weaker pressure than that to detwin the stripe domains and suggests a rather weak transverse stripe stiffness. Weak spatial stiffness and transverse quantum fluctuations are likely key prerequisites for stripes to coexist with superconductivity.

7.
Science ; 375(6584): 1025-1030, 2022 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-35239388

RESUMEN

The motion of a spin excitation across topologically nontrivial magnetic order exhibits a deflection that is analogous to the effect of the Lorentz force on an electrically charged particle in an orbital magnetic field. We used polarized inelastic neutron scattering to investigate the propagation of magnons (i.e., bosonic collective spin excitations) in a lattice of skyrmion tubes in manganese silicide. For wave vectors perpendicular to the skyrmion tubes, the magnon spectra are consistent with the formation of finely spaced emergent Landau levels that are characteristic of the fictitious magnetic field used to account for the nontrivial topological winding of the skyrmion lattice. This provides evidence of a topological magnon band structure in reciprocal space, which is borne out of the nontrivial real-space topology of a magnetic order.

8.
J Phys Condens Matter ; 29(17): 17LT01, 2017 May 04.
Artículo en Inglés | MEDLINE | ID: mdl-28349895

RESUMEN

Two aspects of the ambient pressure magnetic structure of heavy fermion material CeRhIn5 have remained under some debate since its discovery: whether the structure is indeed an incommensurate helix or a spin density wave, and what is the precise magnitude of the ordered magnetic moment. By using a single crystal sample optimized for hot neutrons to minimize neutron absorption by Rh and In, here we report an ordered moment of [Formula: see text]. In addition, by using spherical neutron polarimetry measurements on a similar single crystal sample, we have confirmed the helical nature of the magnetic structure, and identified a single chiral domain.

9.
Phys Rev Lett ; 117(23): 237202, 2016 Dec 02.
Artículo en Inglés | MEDLINE | ID: mdl-27982631

RESUMEN

The Belitz-Kirkpatrick-Vojta (BKV) theory shows in excellent agreement with experiment that ferromagnetic quantum phase transitions (QPTs) in clean metals are generally first order due to the coupling of the magnetization to electronic soft modes, in contrast to the classical analogue that is an archetypical second-order phase transition. For disordered metals the BKV theory predicts that the second-order nature of the QPT is restored because the electronic soft modes change their nature from ballistic to diffusive. Our low-temperature magnetization study identifies the ferromagnetic QPT in the disordered metal UCo_{1-x}Fe_{x}Ge as the first clear example that exhibits the associated critical exponents predicted by the BKV theory.

10.
J Phys Condens Matter ; 28(4): 046004, 2016 Feb 03.
Artículo en Inglés | MEDLINE | ID: mdl-26742679

RESUMEN

Magnetization measurements for magnetic fields [Formula: see text] up to 60 T are reported for the noncentrosymmetric spin-chain metal Yb2Fe12P7. These measurements reveal behavior that is consistent with Ising-like spin chain magnetism that produces pronounced spin degeneracy. In particular, we find that although a Brillouin field dependence is observed in M(H) for [Formula: see text] with a saturation moment that is close to the expected value for free ions of Yb(3+) , non-Brillouin-like behavior is seen for [Formula: see text] with an initial saturation moment that is nearly half the free ion value. In addition, hysteretic behavior that extends above the ordering temperature [Formula: see text] is seen for [Formula: see text] but not for [Formula: see text], suggesting out-of-equilibrium physics. This point of view is strengthened by the observation of a spin reconfiguration in the ordered state for [Formula: see text] which is only seen for [Formula: see text] and after polarizing the spins. Together with the heat capacity data, these results suggest that the anomalous low temperature phenomena that were previously reported (Baumbach 2010 et al Phys. Rev. Lett. 105 106403) are driven by spin degeneracy that is related to the Ising-like one dimensional chain-like configuration of the Yb ions.

11.
Phys Rev Lett ; 115(9): 097203, 2015 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-26371678

RESUMEN

A magnetic helix realizes a one-dimensional magnetic crystal with a period given by the pitch length λh. Its spin-wave excitations-the helimagnons-experience Bragg scattering off this periodicity, leading to gaps in the spectrum that inhibit their propagation along the pitch direction. Using high-resolution inelastic neutron scattering, the resulting band structure of helimagnons was resolved by preparing a single crystal of MnSi in a single magnetic-helix domain. At least five helimagnon bands could be identified that cover the crossover from flat bands at low energies with helimagnons basically localized along the pitch direction to dispersing bands at higher energies. In the low-energy limit, we find the helimagnon spectrum to be determined by a universal, parameter-free theory. Taking into account corrections to this low-energy theory, quantitative agreement is obtained in the entire energy range studied with the help of a single fitting parameter.

12.
J Phys Condens Matter ; 27(24): 245603, 2015 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-26030831

RESUMEN

We have investigated the magnetic ground state of the antiferromagnetic Kondo-lattice compounds CeMAl4Si2(M = Rh, Ir) using neutron powder diffraction. Although both of these compounds show two magnetic transitions T(N1) and T(N2) in the bulk properties measurements, evidence for magnetic long-range order was only found below the lower transition T(N2). Analysis of the diffraction profiles reveals a commensurate antiferromagnetic structure with a propagation vector k = (0, 0, 1/2). The magnetic moment in the ordered state of CeRhAl4Si2 and CeIrAl4Si2 were determined to be 1.14(2) and 1.41(3) µ(B) Ce(-1), respectively, and are parallel to the crystallographic c-axis in agreement with magnetic susceptibility measurements.

13.
Phys Rev Lett ; 113(24): 246403, 2014 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-25541784

RESUMEN

We have used high-resolution neutron spectroscopy experiments to determine the complete spin wave spectrum of the heavy-fermion antiferromagnet CeRhIn5. The spin wave dispersion can be quantitatively reproduced with a simple frustrated J1-J2 model that also naturally explains the magnetic spin-spiral ground state of CeRhIn5 and yields a dominant in-plane nearest-neighbor magnetic exchange constant J0=0.74(3) meV. Our results pave the way to a quantitative understanding of the rich low-temperature phase diagram of the prominent CeTIn5 (T=Co, Rh, Ir) class of heavy-fermion materials.

14.
J Phys Condens Matter ; 26(42): 425601, 2014 Oct 22.
Artículo en Inglés | MEDLINE | ID: mdl-25274176

RESUMEN

A crossover from a non-Fermi liquid to a Fermi liquid phase in Yb2Ni12P7 is observed by analyzing electrical resistivity ρ(T), magnetic susceptibility χ(T), specific heat C(T), and thermoelectric power S(T) measurements. The electronic contribution to specific heat, Ce(T), behaves as Ce(T)/T∼-ln(T) for 5 K4 K. A crossover between Fermi-liquid and non-Fermi liquid behavior suggests that Yb2Ni12P7 is in close proximity to a quantum critical point, in agreement with results from recent measurements of this compound under applied pressure.

15.
Phys Rev Lett ; 106(15): 156403, 2011 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-21568584

RESUMEN

X-ray diffraction, electrical resistivity, magnetic susceptibility, and specific heat measurements on Ce(1-x)Yb(x)CoIn5 (0≤x≤1) reveal that many of the characteristic features of the x=0 correlated electron state are stable for x≤0.775 and that phase separation occurs for x>0.775. The stability of the correlated electron state is apparently due to cooperative behavior of the Ce and Yb ions, involving their unstable valences. Low-temperature non-Fermi liquid behavior is observed and varies with x, even though there is no readily identifiable quantum critical point. The superconducting critical temperature T(c) decreases linearly with x towards 0 K as x→1, in contrast with other HF superconductors where T(c) scales with T(coh).

16.
J Phys Condens Matter ; 23(9): 094222, 2011 Mar 09.
Artículo en Inglés | MEDLINE | ID: mdl-21339575

RESUMEN

Magnetization, specific heat, and electrical resistivity measurements on single crystals of the noncentrosymmetric actinide based compounds U2Fe12P7 and Th2Fe12P7 are reported. The measurements reveal that U2Fe12P7 displays antiferromagnetic order at a Néel temperature T(N) ≈ 14 K, while Th2Fe12P7 is a metal which exhibits Pauli paramagnetism with no evidence for superconductivity for T ≥ 1.1 K. Magnetization measurements on U2Fe12P7 show complicated magnetic behavior involving the U and, possibly, Fe ions, as well; e.g., hysteretic temperature and field dependences and metamagnetism. Electrical resistivity measurements on U2Fe12P7 also indicate large spin disorder scattering of conduction electrons for T ≥ T(N).

17.
J Phys Condens Matter ; 23(9): 094221, 2011 Mar 09.
Artículo en Inglés | MEDLINE | ID: mdl-21339574

RESUMEN

We report measurements of the electrical resistivity, magnetization and specific heat on single crystals of the non-centrosymmetric compound Sm2Fe12P7. The magnetization measurements demonstrate that Sm2Fe12P7 exhibits ferromagnetic order below TM, 1 = 6.3 K. The ratio of the effective magnetic moment obtained from a Curie-Weiss fit to the magnetic susceptibility in the paramagnetic state, to the saturation magnetic moment in the ordered state indicates that the ordered state is associated with itinerant electrons. The specific heat measurements reveal an enhanced value for the coefficient of the electronic specific heat γ ∼ 450 mJ mol (-1) K (-2) that is accompanied by a large coefficient A of the T(2) term in the electrical resistivity at low temperatures, suggesting a heavy fermion ground state. Several consecutive magnetic phase transitions indicative of competing magnetic energy scales and the observation of a metamagnetic transition in the magnetization data additionally suggest proximity to a quantum critical point.

18.
J Phys Condens Matter ; 22(16): 164207, 2010 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-21386413

RESUMEN

High pressure studies in MnSi suggest the existence of a non-Fermi liquid state without quantum criticality. The observation of partial magnetic order in a small pocket of the pressure versus temperature phase diagram of MnSi has additionally inspired several proposals of complex spin textures in chiral magnets. We used neutron scattering to observe the formation of a two-dimensional lattice of skyrmion lines, a type of magnetic vortices, under applied magnetic fields in metallic and semiconducting B20 compounds. In strongly disordered systems the skyrmion lattice is hysteretic and extends over a large temperature range. Our study experimentally establishes magnetic materials lacking inversion symmetry as an arena for new forms of spin order composed of topologically stable spin textures.

19.
J Phys Condens Matter ; 21(16): 164215, 2009 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-21825395

RESUMEN

Systems lacking inversion symmetry, such as selected three-dimensional compounds, multilayers and surfaces support Dzyaloshinsky-Moriya (DM) spin-orbit interactions. In recent years DM interactions have attracted great interest, because they may stabilize magnetic structures with a unique chirality and non-trivial topology. The inherent coupling between the various properties provided by DM interactions is potentially relevant for a variety of applications including, for instance, multiferroic and spintronic devices. The, perhaps, most extensively studied material in which DM interactions are important is the cubic B20 compound MnSi. We review the magnetic field and pressure dependence of the magnetic properties of MnSi. At ambient pressure this material displays helical order. Under hydrostatic pressure a non-Fermi liquid state emerges, where a partial magnetic order, reminiscent of liquid crystals, is observed in a small pocket. Recent experiments strongly suggest that the non-Fermi liquid state is not due to quantum criticality. Instead it may be the signature of spin textures and spin excitations with a non-trivial topology.

20.
Phys Rev Lett ; 100(2): 027201, 2008 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-18232913

RESUMEN

Based on measurements of soft x-ray magnetic diffraction under in situ applied electric field, we report on significant manipulation and exciting of commensurate magnetic order in multiferroic ErMn2O5. The induced magnetic scattering intensity arises at the commensurate magnetic Bragg position whereas the initial magnetic signal almost persists. We demonstrate the possibility to imprint a magnetic response function in ErMn2O5 by applying an electric field.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...