Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
ACS Pharmacol Transl Sci ; 7(9): 2755-2783, 2024 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-39296273

RESUMEN

6-Nitrobenzo[b]thiophene 1,1-dioxide (Stattic) is a potent signal transducer and activator of the transcription 3 (STAT3) inhibitor developed originally for anticancer therapy. However, Stattic harbors several STAT3 inhibition-independent biological effects. To improve the properties of Stattic, we prepared a series of analogues derived from 6-aminobenzo[b]thiophene 1,1-dioxide, a compound directly obtained from the reduction of Stattic, that includes a methoxybenzylamino derivative (K2071) with optimized physicochemical characteristics, including the ability to cross the blood-brain barrier. Besides inhibiting the interleukin-6-stimulated activity of STAT3 mediated by tyrosine 705 phosphorylation, K2071 also showed cytotoxicity against a set of human glioblastoma-derived cell lines. In contrast to the core compound, a part of K2071 cytotoxicity reflected a STAT3 inhibition-independent block of mitotic progression in the prophase, affecting mitotic spindle formation, indicating that K2071 also acts as a mitotic poison. Compared to Stattic, K2071 was significantly less thiol-reactive. In addition, K2071 affected cell migration, suppressed cell proliferation in tumor spheroids, exerted cytotoxicity for glioblastoma temozolomide-induced senescent cells, and inhibited the secretion of the proinflammatory cytokine monocyte chemoattractant protein 1 (MCP-1) in senescent cells. Importantly, K2071 was well tolerated in mice, lacking manifestations of acute toxicity. The structure-activity relationship analysis of the K2071 molecule revealed the necessity of the para-substituted methoxyphenyl motif for antimitotic but not overall cytotoxic activity of its derivatives. Altogether, these results indicate that compound K2071 is a novel Stattic-derived STAT3 inhibitor and a mitotic poison with anticancer and senotherapeutic properties that is effective on glioblastoma cells and may be further developed as an agent for glioblastoma therapy.

2.
Nat Commun ; 15(1): 7600, 2024 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-39217175

RESUMEN

Entangled photon-pair sources are at the core of quantum applications like quantum key distribution, sensing, and imaging. Operation in space-limited and adverse environments such as in satellite-based and mobile communication requires robust entanglement sources with minimal size and weight requirements. Here, we meet this challenge by realizing a cubic micrometer scale entangled photon-pair source in a 3R-stacked transition metal dichalcogenide crystal. Its crystal symmetry enables the generation of polarization-entangled Bell states without additional components and provides tunability by simple control of the pump polarization. Remarkably, generation rate and state tuning are decoupled, leading to equal generation efficiency and no loss of entanglement. Combining transition metal dichalcogenides with monolithic cavities and integrated photonic circuitry or using quasi-phasematching opens the gate towards ultrasmall and scalable quantum devices.

3.
RSC Med Chem ; 15(5): 1601-1625, 2024 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-38784455

RESUMEN

The investigation into human butyrylcholinesterase (hBChE) inhibitors as therapeutic agents for Alzheimer's disease (AD) holds significant promise, addressing both symptomatic relief and disease progression. In the pursuit of novel drug candidates with a selective BChE inhibition pattern, we focused on naturally occurring template structures, specifically Amaryllidaceae alkaloids of the carltonine-type. Herein, we explored a series of compounds implementing an innovative chemical scaffold built on the 3- and 4-benzyloxy-benzylamino chemotype. Notably, compounds 28 (hBChE IC50 = 0.171 ± 0.063 µM) and 33 (hBChE IC50 = 0.167 ± 0.018 µM) emerged as top-ranked hBChE inhibitors. In silico simulations elucidated the binding modes of these compounds within hBChE. CNS availability was predicted using the BBB score algorithm, corroborated by in vitro permeability assessments with the most potent derivatives. Compound 33 was also inspected for aqueous solubility, microsomal and plasma stability. Chemoinformatics analysis validated these hBChE inhibitors for oral administration, indicating favorable gastrointestinal absorption in compliance with Lipinski's and Veber's rules. Safety assessments, crucial for the chronic administration typical in AD treatment, were conducted through cytotoxicity testing on human neuroblastoma (SH-SY5Y) and hepatocellular carcinoma (HepG2) cell lines.

4.
Biomed Pharmacother ; 173: 116399, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38492439

RESUMEN

The search for novel drugs to address the medical needs of Alzheimer's disease (AD) is an ongoing process relying on the discovery of disease-modifying agents. Given the complexity of the disease, such an aim can be pursued by developing so-called multi-target directed ligands (MTDLs) that will impact the disease pathophysiology more comprehensively. Herewith, we contemplated the therapeutic efficacy of an amiridine drug acting as a cholinesterase inhibitor by converting it into a novel class of novel MTDLs. Applying the linking approach, we have paired amiridine as a core building block with memantine/adamantylamine, trolox, and substituted benzothiazole moieties to generate novel MTDLs endowed with additional properties like N-methyl-d-aspartate (NMDA) receptor affinity, antioxidant capacity, and anti-amyloid properties, respectively. The top-ranked amiridine-based compound 5d was also inspected by in silico to reveal the butyrylcholinesterase binding differences with its close structural analogue 5b. Our study provides insight into the discovery of novel amiridine-based drugs by broadening their target-engaged profile from cholinesterase inhibitors towards MTDLs with potential implications in AD therapy.


Asunto(s)
Enfermedad de Alzheimer , Inhibidores de la Colinesterasa , Humanos , Inhibidores de la Colinesterasa/farmacología , Inhibidores de la Colinesterasa/uso terapéutico , Inhibidores de la Colinesterasa/química , Enfermedad de Alzheimer/tratamiento farmacológico , Enfermedad de Alzheimer/metabolismo , Butirilcolinesterasa/metabolismo , Aminoquinolinas/uso terapéutico , Acetilcolinesterasa/metabolismo , Ligandos
5.
Chem Biol Interact ; 394: 110941, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38493910

RESUMEN

The current study imposes a new class of organophosphorus (OP)-inhibited cholinesterase reactivators by conceptualizing a family of asymmetric bisoximes with various reactivating scaffolds. Several novel nucleophilic warheads were investigated, putting forward 29 novel reactivating options, by evaluating their nucleophilicity and ability to directly decompose OP compounds. Adopting the so-called zwitterionic strategy, 17 mono-oxime and nine bisoxime reactivators were discovered with major emphasis on the bifunctional-moiety approach. Compounds were compared with clinically used standards and other known experimentally highlighted reactivators. Our results clearly favor the concept of asymmetric bisoximes as leading reactivators in terms of efficacy and versatility. These top-ranked compounds were characterized in detail by reactivation kinetics parameters and evaluated for potential CNS availability. The highlighted molecules 55, 57, and 58 with various reactivating warheads, surpassed the reactivating potency of pralidoxime and several notable uncharged reactivators. The versatility of lead drug candidate 55 was also inspected on OP-inhibited butyrylcholinesterase, revealing a much higher rate compared to existing clinical antidotes.


Asunto(s)
Butirilcolinesterasa , Reactivadores de la Colinesterasa , Intoxicación por Organofosfatos , Oximas , Oximas/química , Oximas/farmacología , Reactivadores de la Colinesterasa/química , Reactivadores de la Colinesterasa/farmacología , Butirilcolinesterasa/metabolismo , Butirilcolinesterasa/química , Humanos , Intoxicación por Organofosfatos/tratamiento farmacológico , Acetilcolinesterasa/metabolismo , Antídotos/química , Antídotos/farmacología , Cinética , Inhibidores de la Colinesterasa/química , Inhibidores de la Colinesterasa/farmacología , Animales , Compuestos Organofosforados/química
6.
Eur J Med Chem ; 258: 115611, 2023 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-37421887

RESUMEN

Phenotypic screening of an in-house library of small molecule purine derivatives against Mycobacterium tuberculosis (Mtb) led to the identification of 2-morpholino-7-(naphthalen-2-ylmethyl)-1,7-dihydro-6H-purin-6-one 10 as a potent antimycobacterial agent with MIC99 of 4 µM. Thorough structure-activity relationship studies revealed the importance of 7-(naphthalen-2-ylmethyl) substitution for antimycobacterial activity, yet opened the possibility of structural modifications at positions 2 and 6 of the purine core. As the result, optimized analogues with 6-amino or ethylamino substitution 56 and 64, respectively, were developed. These compounds showed strong in vitro antimycobacterial activity with MIC of 1 µM against Mtb H37Rv and against several clinically isolated drug-resistant strains, had limited toxicity to mammalian cell lines, medium clearance with respect to phase I metabolic deactivation (27 and 16.8 µL/min/mg), sufficient aqueous solubility (>90 µM) and high plasma stability. Interestingly, investigated purines, including compounds 56 and 64, lacked activity against a panel of Gram-negative and Gram-positive bacterial strains, indicating a specific mycobacterial molecular target. To investigate the mechanism of action, Mtb mutants resistant to hit compound 10 were isolated and their genomes were sequenced. Mutations were found in dprE1 (Rv3790), which encodes decaprenylphosphoryl-ß-d-ribose oxidase DprE1, enzyme essential for the biosynthesis of arabinose, a vital component of the mycobacterial cell wall. Inhibition of DprE1 by 2,6-disubstituted 7-(naphthalen-2-ylmethyl)-7H-purines was proved using radiolabelling experiments in Mtb H37Rv in vitro. Finally, structure-binding relationships between selected purines and DprE1 using molecular modeling studies in tandem with molecular dynamic simulations revealed the key structural features for effective drug-target interaction.


Asunto(s)
Antituberculosos , Mycobacterium tuberculosis , Animales , Antituberculosos/química , Oxidorreductasas de Alcohol/química , Purinas/farmacología , Relación Estructura-Actividad , Simulación de Dinámica Molecular , Proteínas Bacterianas/metabolismo , Mamíferos/metabolismo
7.
Arch Toxicol ; 97(1): 39-72, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36335468

RESUMEN

Organophosphorus compounds (OP) are a constant problem, both in the military and in the civilian field, not only in the form of acute poisoning but also for their long-lasting consequences. No antidote has been found that satisfactorily protects against the toxic effects of organophosphates. Likewise, there is no universal cure to avert damage after poisoning. The key mechanism of organophosphate toxicity is the inhibition of acetylcholinesterase. The overstimulation of nicotinic or muscarinic receptors by accumulated acetylcholine on a synaptic cleft leads to activation of the glutamatergic system and the development of seizures. Further consequences include generation of reactive oxygen species (ROS), neuroinflammation, and the formation of various other neuropathologists. In this review, we present neuroprotection strategies which can slow down the secondary nerve cell damage and alleviate neurological and neuropsychiatric disturbance. In our opinion, there is no unequivocal approach to ensure neuroprotection, however, sooner the neurotoxicity pathway is targeted, the better the results which can be expected. It seems crucial to target the key propagation pathways, i.e., to block cholinergic and, foremostly, glutamatergic cascades. Currently, the privileged approach oriented to stimulating GABAAR by benzodiazepines is of limited efficacy, so that antagonizing the hyperactivity of the glutamatergic system could provide an even more efficacious approach for terminating OP-induced seizures and protecting the brain from permanent damage. Encouraging results have been reported for tezampanel, an antagonist of GluK1 kainate and AMPA receptors, especially in combination with caramiphen, an anticholinergic and anti-glutamatergic agent. On the other hand, targeting ROS by antioxidants cannot or already developed neuroinflammation does not seem to be very productive as other processes are also involved.


Asunto(s)
Síndromes de Neurotoxicidad , Intoxicación por Organofosfatos , Humanos , Acetilcolinesterasa/metabolismo , Especies Reactivas de Oxígeno , Organofosfatos , Enfermedades Neuroinflamatorias , Síndromes de Neurotoxicidad/etiología , Síndromes de Neurotoxicidad/prevención & control , Intoxicación por Organofosfatos/tratamiento farmacológico , Intoxicación por Organofosfatos/prevención & control , Convulsiones , Inhibidores de la Colinesterasa/toxicidad
8.
Molecules ; 27(21)2022 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-36364465

RESUMEN

The synthesis of a tetrathiafulvalene (TTF) derivative, S-[4-({4-[(2,2'-bi-1,3-dithiol-4-ylmethoxy)methyl] phenyl}ethynyl)phenyl] ethanethioate, suitable for the modification of gold nanoparticles (AuNPs), is described in this article. The TTF ligand was self-assembled on the AuNP surface through ligand exchange, starting from dodecanethiol-stabilized AuNPs. The resulting modified AuNPs were characterized by TEM, UV-Vis spectroscopy, and electrochemistry. The most suitable electrochemical method was the phase-sensitive AC voltammetry at very low frequencies of the sine-wave perturbation. The results indicate a diminishing electronic communication between the two equivalent redox centers of TTF and also intermolecular donor-acceptor interactions manifested by an additional oxidation wave upon attachment of the ligand to AuNPs.


Asunto(s)
Oro , Nanopartículas del Metal , Oro/química , Electroquímica/métodos , Ligandos , Nanopartículas del Metal/química
9.
Opt Express ; 30(21): 37213-37223, 2022 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-36258313

RESUMEN

Squeezed states are an interesting class of quantum states that have numerous applications. This work presents the design, characterization, and operation of a bow-tie optical parametric amplifier (OPA) for squeezed vacuum generation. We report the high duty cycle operation and long-term stability of the system that makes it suitable for post-selection based continuous-variable quantum information protocols, cluster-state quantum computing, quantum metrology, and potentially gravitational wave detectors. Over a 50 hour continuous operation, the measured squeezing levels were greater than 10 dB with a duty cycle of 96.6%. Alternatively, in a different mode of operation, the squeezer can also operate 10 dB below the quantum noise limit over a 12 hour period with no relocks, with an average squeezing of 11.9 dB. We also measured a maximum squeezing level of 12.6 dB at 1550 nm. This represents one of the best reported squeezing results at 1550 nm to date for a bow-tie cavity. We discuss the design aspects of the experiment that contribute to the overall stability, reliability, and longevity of the OPA, along with the automated locking schemes and different modes of operation.

10.
Crit Rev Clin Lab Sci ; 59(8): 517-554, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-35575431

RESUMEN

Vitamin D has a well-known role in the calcium homeostasis associated with the maintenance of healthy bones. It increases the efficiency of the intestinal absorption of dietary calcium, reduces calcium losses in urine, and mobilizes calcium stored in the skeleton. However, vitamin D receptors are present ubiquitously in the human body and indeed, vitamin D has a plethora of non-calcemic functions. In contrast to most vitamins, sufficient vitamin D can be synthesized in human skin. However, its production can be markedly decreased due to factors such as clothing, sunscreens, intentional avoidance of the direct sunlight, or the high latitude of the residence. Indeed, more than one billion people worldwide are vitamin D deficient, and the deficiency is frequently undiagnosed. The chronic deficiency is not only associated with rickets/osteomalacia/osteoporosis but it is also linked to a higher risk of hypertension, type 1 diabetes, multiple sclerosis, or cancer. Supplementation of vitamin D may be hence beneficial, but the intake of vitamin D should be under the supervision of health professionals because overdosing leads to intoxication with severe health consequences. For monitoring vitamin D, several analytical methods are employed, and their advantages and disadvantages are discussed in detail in this review.


Asunto(s)
Raquitismo , Deficiencia de Vitamina D , Humanos , Vitamina D/metabolismo , Vitamina D/uso terapéutico , Calcio , Deficiencia de Vitamina D/complicaciones , Deficiencia de Vitamina D/tratamiento farmacológico , Vitaminas , Raquitismo/complicaciones , Raquitismo/tratamiento farmacológico , Calcio de la Dieta
11.
Eur J Med Chem ; 232: 114193, 2022 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-35176563

RESUMEN

Schizophrenia is a serious mental disorder without a fully understood pathomechanism, but which involves dysregulation of neurotransmitters and their receptors. The best option for the management of schizophrenia comprises so-called multi-target ligands, similar to the third generation of neuroleptics. Dopamine type 2 receptors (D2Rs) are the main target in the treatment of schizophrenia, in particular for mitigation of the positive symptoms. Due to the high expression of 5-hydroxytryptamine type 3 receptors (5-HT3Rs) in human brain areas responsible for emotional behavior, motivation, and cognitive function, 5-HT3Rs represent a potential target for modulating the cognitive and negative symptoms of schizophrenia. Here we present the design, synthesis, and both in vitro and in vivo biological evaluation of 1,4-disubstituted aromatic piperazines. Screening of in vitro properties revealed the two most promising drug candidates (21 and 24) which were found to be potent D2Rs and moderate 5-HT3R antagonists, and which were forwarded to in vivo studies in Wistar rats. Considering toxicity, administration of the maximal feasible dose of 21 (2 mg/kg) did not produce any side effects. By contrast, the higher solubility of 24 led to revelation of mild and temporary side effects at the dose of 20 mg/kg. Importantly, both 21 and 24 showed facile crossing of the blood-brain barrier, even exerting higher levels in the brain in comparison to plasma. In a behavioral study using the acute amphetamine model of psychosis, we showed that compound 24 ameliorated both positive and negative effects of amphetamine including hyperlocomotion, social impairments, and disruption of prepulse inhibition. The effect of the highest dose (10 mg/kg) was comparable to the effect of the reference dose of aripiprazole (1 mg/kg).


Asunto(s)
Antipsicóticos , Esquizofrenia , Animales , Antipsicóticos/efectos adversos , Piperazinas/farmacología , Ratas , Ratas Wistar , Receptores de Serotonina , Esquizofrenia/tratamiento farmacológico , Esquizofrenia/metabolismo
12.
Future Med Chem ; 13(22): 1945-1962, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34633218

RESUMEN

Background: Increasing resistance has resulted in an urgent need for new antimicrobial drugs. A systematic me-too approach was chosen to modify clinically used sulfonamides to obtain their imines. Methods & results: Twenty-five compounds were synthesized and evaluated for their antibacterial activity. The most active compounds were also investigated against methicillin- and trimethoprim/sulfamethoxazole (SMX)-resistant Gram-positive species. Staphylococci shared the highest susceptibility including resistant strains with minimum inhibitory concentrations from 3.91 µM (≥2.39 µg ml-1). Crucially, the compounds inhibit MRSA and trimethoprim/SMX-resistant Staphylococci without any cross-resistance. Modification of parent sulfonamides turned a bacteriostatic effect into a bactericidal effect. Toxicity for HepG2 and hemolytic properties were also determined. Conclusions: The presence of a dihalogenated salicylidene moiety is required for optimal activity. Based on toxicity, promising derivatives for further investigation were identified.


Asunto(s)
Aldehídos/farmacología , Antibacterianos/farmacología , Iminas/farmacología , Staphylococcus/efectos de los fármacos , Sulfonamidas/farmacología , Aldehídos/química , Antibacterianos/síntesis química , Antibacterianos/química , Farmacorresistencia Bacteriana/efectos de los fármacos , Iminas/química , Pruebas de Sensibilidad Microbiana , Estructura Molecular , Sulfonamidas/química
13.
Bioorg Med Chem Lett ; 51: 128374, 2021 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-34555506

RESUMEN

Alzheimers disease (AD) is the most common neurodegenerative disorder, characterized by neuronal loss and cognitive impairment. Currently, very few drugs are available for AD treatment, and a search for new therapeutics is urgently needed. Thus, in the current study, twenty-eight new derivatives of montanine-type Amaryllidaceae alkaloids were synthesized and evaluated for their ability to inhibit human recombinant acetylcholinesterase (hAChE) and butyrylcholinesterase (hBuChE). Three derivatives (1n, 1o, and 1p) with different substitution patterns demonstrated significant selective inhibitory potency for hAChE (IC50 < 5 µM), and one analog, 1v, showed selective hBuChE inhibition activity (IC50 = 1.73 ± 0.05 µM). The prediction of CNS availability, as disclosed by the BBB score, suggests that the active compounds in this survey should be able pass through the blood-brain barrier (BBB). Cytotoxicity screening and docking studies were carried out for the two most pronounced cholinesterase inhibitors, 1n and 1v.


Asunto(s)
Alcaloides/farmacología , Enfermedad de Alzheimer/tratamiento farmacológico , Inhibidores de la Colinesterasa/farmacología , Isoquinolinas/farmacología , Simulación del Acoplamiento Molecular , Acetilcolinesterasa/metabolismo , Alcaloides/síntesis química , Alcaloides/química , Enfermedad de Alzheimer/metabolismo , Barrera Hematoencefálica/efectos de los fármacos , Barrera Hematoencefálica/metabolismo , Butirilcolinesterasa/metabolismo , Inhibidores de la Colinesterasa/síntesis química , Inhibidores de la Colinesterasa/química , Relación Dosis-Respuesta a Droga , Humanos , Isoquinolinas/síntesis química , Isoquinolinas/química , Estructura Molecular , Relación Estructura-Actividad
14.
Int J Mol Sci ; 22(15)2021 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-34361074

RESUMEN

Alzheimer's disease (AD) is a multifactorial neurodegenerative condition of the central nervous system (CNS) that is currently treated by cholinesterase inhibitors and the N-methyl-d-aspartate receptor antagonist, memantine. Emerging evidence strongly supports the relevance of targeting butyrylcholinesterase (BuChE) in the more advanced stages of AD. Within this study, we have generated a pilot series of compounds (1-20) structurally inspired from belladine-type Amaryllidaceae alkaloids, namely carltonine A and B, and evaluated their acetylcholinesterase (AChE) and BuChE inhibition properties. Some of the compounds exhibited intriguing inhibition activity for human BuChE (hBuChE), with a preference for BuChE over AChE. Seven compounds were found to possess a hBuChE inhibition profile, with IC50 values below 1 µM. The most potent one, compound 6, showed nanomolar range activity with an IC50 value of 72 nM and an excellent selectivity pattern over AChE, reaching a selectivity index of almost 1400. Compound 6 was further studied by enzyme kinetics, along with in-silico techniques, to reveal the mode of inhibition. The prediction of CNS availability estimates that all the compounds in this survey can pass through the blood-brain barrier (BBB), as disclosed by the BBB score.


Asunto(s)
Acetilcolinesterasa/química , Alcaloides de Amaryllidaceae/química , Butirilcolinesterasa/química , Inhibidores de la Colinesterasa/farmacología , Simulación del Acoplamiento Molecular , Neuroblastoma/tratamiento farmacológico , Tiramina/análogos & derivados , Proliferación Celular , Inhibidores de la Colinesterasa/química , Simulación por Computador , Humanos , Neuroblastoma/patología , Relación Estructura-Actividad , Células Tumorales Cultivadas , Tiramina/química
15.
Sensors (Basel) ; 21(12)2021 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-34205763

RESUMEN

Flocks of birds may cause major damage to fruit crops in the ripening phase. This problem is addressed by various methods for bird scaring; in many cases, however, the birds become accustomed to the distraction, and the applied scaring procedure loses its purpose. To help eliminate the difficulty, we present a system to detect flocks and to trigger an actuator that will scare the objects only when a flock passes through the monitored space. The actual detection is performed with artificial intelligence utilizing a convolutional neural network. Before teaching the network, we employed videocameras and a differential algorithm to detect all items moving in the vineyard. Such objects revealed in the images were labeled and then used in training, testing, and validating the network. The assessment of the detection algorithm required evaluating the parameters precision, recall, and F1 score. In terms of function, the algorithm is implemented in a module consisting of a microcomputer and a connected videocamera. When a flock is detected, the microcontroller will generate a signal to be wirelessly transmitted to the module, whose task is to trigger the scaring actuator.


Asunto(s)
Inteligencia Artificial , Frutas , Animales , Aves , Redes Neurales de la Computación
16.
Bioorg Med Chem ; 41: 116209, 2021 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-34015704

RESUMEN

Hydrazide-hydrazones have been described as a scaffold with antimicrobial and cytotoxic activities as well as iodinated compounds. A resistance rate of bacterial and fungal pathogens has increased considerably. That is why we synthesized and screened twenty-two iodinated hydrazide-hydrazones 1 and 2, ten 1,2-diacylhydrazines 3 and their three reduced analogues 4 for their antibacterial, antifungal, and cytotoxic properties. Hydrazide-hydrazones were prepared by condensation of 4-substituted benzohydrazides with 2-/4-hydroxy-3,5-diiodobenzaldehydes, diacylhydrazines from identical benzohydrazides and 3,5-diiodosalicylic acid via its chloride. These compounds were investigated in vitro against eight bacterial and eight fungal strains. The derivatives were found potent antibacterial agents against Gram-positive cocci including methicillin-resistant Staphylococcus aureus with the lowest values of minimum inhibitory concentrations (MIC) of 7.81 µM. Four compounds inhibited also human pathogenic fungi (MIC of ≥1.95 µM). The derivatives had different degrees of cytotoxicity for HepG2 and HK-2 cell lines (IC50 values from 11.72 and 26.80 µM, respectively). Importantly, normal human cells exhibited lower sensitivity. The apoptotic effect was also investigated. In general, the presence of 3,5-diiodosalicylidene scaffold (compounds 1) is translated into enhanced both antimicrobial and cytotoxic properties whereas its 4-hydroxy isomers 2 share a low biological activity. N'-Benzoyl-2-hydroxy-3,5-diiodobenzohydrazides 3 have a non-homogeneous activity profile. Focusing on 4-substituted benzohydrazide part, the presence of an electron-withdrawing group (F, Cl, CF3, NO2) was found to be beneficial.


Asunto(s)
Antibacterianos/farmacología , Antifúngicos/farmacología , Antineoplásicos/farmacología , Hidrazinas/química , Hidrazonas/química , Antibacterianos/química , Antifúngicos/química , Antineoplásicos/química , Bacterias/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Descubrimiento de Drogas , Hongos/efectos de los fármacos , Células Hep G2 , Humanos
17.
J Labelled Comp Radiopharm ; 64(7): 262-270, 2021 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-33818828

RESUMEN

The key factors participating in angiogenesis include vascular endothelial growth factor (VEGF) and its receptors (VEGFRs), particularly VEGFR2. Angiogenesis suppression comprises the blocking of the VEGFR2 binding site by the monoclonal antibody ramucirumab (RAM). Our study focused on RAM radiolabelling with zirconium-89 along with subsequent in vitro and in vivo biological evaluation. RAM was conjugated with the bifunctional chelator p-SCN-Bn-deferoxamine (DFO) and subsequently radiolabelled with [89 Zr]Zr-oxalate. The binding affinity of [89 Zr]Zr-DFO-RAM to VEGFR2 was tested in vitro on prostate (PC-3) and ovary adenocarcinoma (SK-OV-3) cell lines. The positron emission tomography/computed tomography (PET/CT) imaging and ex vivo biodistribution experiments were performed in PC-3 and SK-OV-3 xenografted mice. The in vitro experiments revealed the preserved binding affinity of [89 Zr]Zr-DFO-RAM to VEGFR2. The obtained ex vivo biodistribution data showed the uptake in PC-3 and SK-OV-3 tumours at about 8.7 ± 0.2 and 12.1 ± 1.6%ID/g, respectively. The tumour-to-muscle ratio for 1, 3 and 6 days post injection was 3.9, 5.5 and 5.12 for PC-3 and 6.0, 8.0 and 8.82 for SK-OV-3 tumours, respectively. PET/CT images showed high radioactivity accumulation in the tumours starting already on the first day after tracer administration. The obtained results proved the potency of [89 Zr]Zr-DFO-RAM to target and image VEGFR2-positive tumours in vivo.


Asunto(s)
Radioisótopos , Circonio
18.
Vnitr Lek ; 66(6): 381-385, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33380144

RESUMEN

Dieulafoy`s lesion is a rare condition characterized by bleeding into gastrointestinal tract from minimaly eroded submucous artery. Mostly is localized in stomach in elderly polymorbid men, but can occure in entire gastrointestinal tract, in both sexes, in every age. It should be thought off as one of possible causes of obscure bleeding. It is often massive, requiring fast diagnostics, treatment and multidisciplinary approach. The case report discusses patient with recurrent hemodynamicaly significant bleeding into jejunum. It pointed to combined diagnostic approach using both endoscopy and angiography. After failing endoscopically and angiografically due to hemodynamic instability, surgical intervention took place. Precise Dieulafoy`s lesion diagnosis has been determined eventually on histologic section. Diagnostic and therapeutic approach should be individual taking patient´s condition and capabilities of department into consideration. Surgical intervention remains golden standard when hemodynamic instability occures or when endoscopy and angiography fail.


Asunto(s)
Enfermedades Gastrointestinales , Enfermedades Vasculares , Anciano , Angiografía , Femenino , Hemorragia Gastrointestinal/etiología , Humanos , Yeyuno/diagnóstico por imagen , Masculino
19.
Biomolecules ; 10(5)2020 05 22.
Artículo en Inglés | MEDLINE | ID: mdl-32455879

RESUMEN

Thirteen known (1-12 and 16) and three previously undescribed Amaryllidaceae alkaloids of belladine structural type, named carltonine A-C (13-15), were isolated from bulbs of Narcissus pseudonarcissus cv. Carlton (Amaryllidaceae) by standard chromatographic methods. Compounds isolated in sufficient amounts, and not tested previously, were evaluated for their in vitro acetylcholinesterase (AChE; E.C. 3.1.1.7), butyrylcholinesterase (BuChE; E.C. 3.1.1.8) and prolyl oligopeptidase (POP; E.C. 3.4.21.26) inhibition activities. Significant human BuChE (hBUChE) inhibitory activity was demonstrated by newly described alkaloids carltonine A (13) and carltonine B (14) with IC50 values of 913 ± 20 nM and 31 ± 1 nM, respectively. Both compounds displayed a selective inhibition pattern for hBuChE with an outstanding selectivity profile over AChE inhibition, higher than 100. The in vitro data were further supported by in silico studies of the active alkaloids 13 and 14 in the active site of hBuChE.


Asunto(s)
Alcaloides/farmacología , Butirilcolinesterasa/metabolismo , Inhibidores de la Colinesterasa/farmacología , Narcissus/química , Alcaloides/química , Sitios de Unión , Butirilcolinesterasa/química , Inhibidores de la Colinesterasa/química , Humanos , Simulación del Acoplamiento Molecular , Unión Proteica
20.
Molecules ; 25(7)2020 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-32230728

RESUMEN

Tuberculosis is an infectious disease caused by Mycobacterium tuberculosis (Mtb), each year causing millions of deaths. In this article, we present the synthesis and biological evaluations of new potential antimycobacterial compounds containing a fragment of the first-line antitubercular drug pyrazinamide (PZA), coupled with methyl or ethyl esters of selected amino acids. The antimicrobial activity was evaluated on a variety of (myco)bacterial strains, including Mtb H37Ra, M. smegmatis, M. aurum, Staphylococcus aureus, Pseudomonas aeruginosa, and fungal strains, including Candida albicans and Aspergillus flavus. Emphasis was placed on the comparison of enantiomer activities. None of the synthesized compounds showed any significant activity against fungal strains, and their antibacterial activities were also low, the best minimum inhibitory concentration (MIC) value was 31.25 µM. However, several compounds presented high activity against Mtb. Overall, higher activity was seen in derivatives containing ʟ-amino acids. Similarly, the activity seems tied to the more lipophilic compounds. The most active derivative contained phenylglycine moiety (PC-ᴅ/ʟ-Pgl-Me, MIC < 1.95 µg/mL). All active compounds possessed low cytotoxicity and good selectivity towards Mtb. To the best of our knowledge, this is the first study comparing the activities of the ᴅ- and ʟ-amino acid derivatives of pyrazinamide as potential antimycobacterial compounds.


Asunto(s)
Aminoácidos/farmacología , Antibacterianos/farmacología , Antituberculosos/farmacología , Mycobacterium tuberculosis/efectos de los fármacos , Pirazinamida/farmacología , Tuberculosis/tratamiento farmacológico , Aminoácidos/química , Aspergillus flavus/efectos de los fármacos , Candida albicans/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Cromatografía Liquida , Cromatografía de Gases y Espectrometría de Masas , Células Hep G2 , Humanos , Concentración de Iones de Hidrógeno , Espectroscopía de Resonancia Magnética , Pruebas de Sensibilidad Microbiana , Mycobacterium smegmatis/efectos de los fármacos , Rotación Óptica , Pseudomonas aeruginosa/efectos de los fármacos , Pirazinamida/química , Staphylococcus aureus/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...