Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Mol Cancer Ther ; 2024 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-38958494

RESUMEN

The epidermal growth factor receptor (EGFR) plays an essential role in cellular signaling pathways that regulate cell growth, proliferation and survival, and is often found dysregulated in cancer. Several monoclonal IgG antibodies have been clinically tested over the years which exert their function via blocking the ligand binding domain (thereby inhibiting downstream signaling) and induction of Fc-related effector functions, such as antibody-dependent cellular cytotoxicity (ADCC) and antibody-dependent cellular phagocytosis (ADCP). However, these IgG antibodies do not optimally recruit neutrophils, by far the most abundant white blood cell population in humans. Therefore, we reformatted six therapeutic EGFR antibodies (cetuximab, panitumumab, nimotuzumab, necitumumab, zalutumumab, and matuzumab) into the IgA3.0 format, which is an IgA2 isotype that has been adapted for clinical application. Reformatting these antibodies preserved Fab-mediated functions such as EGFR binding, growth inhibition and ligand blockade. Additionally, whole leukocyte ADCC was significantly increased when using this panel of IgA3.0 antibodies compared to their respective IgG counterparts, with no major differences between IgA3.0 antibodies. In vivo, IgA3.0 matuzumab outperformed the other antibodies, resulting in the strongest suppression of tumor outgrowth in a long intraperitoneal model. We show that neutrophils are important for the suppression of tumor outgrowth. IgA3.0 matuzumab exhibited reduced receptor internalization compared to the other antibodies, possibly accounting for its superior in vivo Fc-mediated tumor cell killing efficacy. In conclusion, reformatting EGFR antibodies into an IgA3.0 format increased Fc-mediated killing while retaining Fab-mediated functions and could therefore be a good alternative for the currently available antibody therapies.

2.
Cancer Immunol Immunother ; 73(1): 16, 2024 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-38236251

RESUMEN

Collagen expression and structure in the tumour microenvironment are associated with tumour development and therapy response. Leukocyte-associated immunoglobulin-like receptor-1 (LAIR-1) is a widely expressed inhibitory collagen receptor. LAIR-2 is a soluble homologue of LAIR-1 that competes for collagen binding. Multiple studies in mice implicate blockade of LAIR-1:collagen interaction in cancer as a promising therapeutic strategy. Here, we investigated the role of LAIR-1 in anti-tumour responses. We show that although LAIR-1 inhibits activation, proliferation, and cytokine production of mouse T cells in vitro, tumour outgrowth in LAIR-1-deficient mice did not differ from wild type mice in several in vivo tumour models. Furthermore, treatment with NC410, a LAIR-2-Fc fusion protein, did not result in increased tumour clearance in tested immunocompetent mice, which contrasts with previous data in humanized mouse models. This discrepancy may be explained by our finding that NC410 blocks human LAIR-1:collagen interaction more effectively than mouse LAIR-1:collagen interaction. Despite the lack of therapeutic impact of NC410 monotherapy, mice treated with a combination of NC410 and anti-programmed death-ligand 1 did show reduced tumour burden and increased survival. Using LAIR-1-deficient mice, we showed that this effect seemed to be dependent on the presence of LAIR-1. Taken together, our data demonstrate that the absence of LAIR-1 signalling alone is not sufficient to control tumour growth in multiple immunocompetent mouse models. However, combined targeting of LAIR-1 and PD-L1 results in increased tumour control. Thus, additional targeting of the LAIR-1:collagen pathway with NC410 is a promising approach to treating tumours where conventional immunotherapy is ineffective.


Asunto(s)
Antígeno B7-H1 , Neoplasias , Animales , Humanos , Ratones , Colágeno , Modelos Animales de Enfermedad , Leucocitos , Ligandos , Neoplasias/tratamiento farmacológico , Microambiente Tumoral
3.
Cancers (Basel) ; 15(13)2023 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-37444515

RESUMEN

Immunotherapy with targeted therapeutic antibodies is often ineffective in long-term responses in cancer patients due to resistance mechanisms such as overexpression of checkpoint molecules. Similar to T lymphocytes, myeloid immune cells express inhibitory checkpoint receptors that interact with ligands overexpressed on cancer cells, contributing to treatment resistance. While CD47/SIRPα-axis inhibitors in combination with IgA therapy have shown promise, complete tumor eradication remains a challenge, indicating the presence of other checkpoints. We investigated hypersialylation on the tumor cell surface as a potential myeloid checkpoint and found that hypersialylated cancer cells inhibit neutrophil-mediated tumor killing through interactions with sialic acid-binding immunoglobulin-like lectins (Siglecs). To enhance antibody-dependent cellular cytotoxicity (ADCC) using IgA as therapeutic, we explored strategies to disrupt the interaction between tumor cell sialoglycans and Siglecs expressed on neutrophils. We identified Siglec-9 as the primary inhibitory receptor, with Siglec-7 also playing a role to a lesser extent. Blocking Siglec-9 enhanced IgA-mediated ADCC by neutrophils. Concurrent expression of multiple checkpoint ligands necessitated a multi-checkpoint-blocking approach. In certain cancer cell lines, combining CD47 blockade with desialylation improved IgA-mediated ADCC, effectively overcoming resistance that remained when blocking only one checkpoint interaction. Our findings suggest that a combination of CD47 blockade and desialylation may be necessary to optimize cancer immunotherapy, considering the upregulation of checkpoint molecules by tumor cells to evade immune surveillance.

4.
Front Immunol ; 14: 1178817, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37346044

RESUMEN

Upregulation of surface expressed sialoglycans on tumor cells is one of the mechanisms which promote tumor growth and progression. Specifically, the interactions of sialic acids with sialic acid-binding immunoglobulin-like lectins (Siglecs) on lymphoid or myeloid cells transmit inhibitory signals and lead to suppression of anti-tumor responses. Here, we show that neutrophils express among others Siglec-9, and that EGFR and HER2 positive breast tumor cells express ligands for Siglec-9. Treatment of tumor cells with neuraminidases or a sialyl transferase inhibitor significantly reduced binding of a soluble recombinant Siglec-9-Fc fusion protein, while EGFR and HER2 expression remained unchanged. Importantly, the cytotoxic activity of neutrophils driven by therapeutic EGFR or HER2 antibodies in vitro was increased by blocking the sialic acid/Siglec interaction, either by reducing tumor cell sialylation or by a Siglec-9 blocking antibody containing an effector silenced Fc domain. In vivo a short-term xenograft mouse model confirmed the improved therapeutic efficacy of EGFR antibodies against sialic acid depleted, by a sialyltransferase inhibitor, tumor cells compared to untreated cells. Our studies demonstrate that sialic acid/Siglec interactions between tumor cells and myeloid cells can impair antibody dependent tumor cell killing, and that Siglec-9 on polymorphonuclear cells (PMN) is critically involved. Considering that PMN are often a highly abundant cell population in the tumor microenvironment, Siglec-9 constitutes a promising target for myeloid checkpoint blockade to improve antibody-based tumor immunotherapy.


Asunto(s)
Ácido N-Acetilneuramínico , Neoplasias , Humanos , Ratones , Animales , Ácido N-Acetilneuramínico/metabolismo , Neutrófilos/metabolismo , Lectinas Similares a la Inmunoglobulina de Unión a Ácido Siálico/metabolismo , Anticuerpos , Ácidos Siálicos/metabolismo , Receptores ErbB , Microambiente Tumoral
5.
Cancer Immunol Immunother ; 72(9): 3063-3077, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37338671

RESUMEN

Since mice do not express a homologue of the human Fc alpha receptor (FcαRI or CD89), a transgenic mouse model was generated in four different backgrounds (C57BL/6, BALB/c, SCID and NXG) expressing the FcαRI under the endogenous human promoter. In this study, we describe previously unknown characteristics of this model, such as the integration site of the FCAR gene, the CD89 expression pattern in healthy male and female mice and in tumor-bearing mice, expression of myeloid activation markers and FcγRs and IgA/CD89-mediated tumor killing capacity. In all mouse strains, CD89 expression is highest in neutrophils, intermediate on other myeloid cells such as eosinophils and DC subsets and inducible on, among others, monocytes, macrophages and Kupffer cells. CD89 expression levels are highest in BALB/c and SCID, lower in C57BL/6 and lowest in NXG mice. Additionally, CD89 expression on myeloid cells is increased in tumor-bearing mice across all mouse strains. Using Targeted Locus Amplification, we determined that the hCD89 transgene has integrated in chromosome 4. Furthermore, we established that wildtype and hCD89 transgenic mice have a similar composition and phenotype of immune cells. Finally, IgA-mediated killing of tumor cells is most potent with neutrophils from BALB/c and C57BL/6 and less with neutrophils from SCID and NXG mice. However, when effector cells from whole blood are used, SCID and BALB/c are most efficient, since these strains have a much higher number of neutrophils. Overall, hCD89 transgenic mice provide a very powerful model to test the efficacy of IgA immunotherapy against infectious diseases and cancer.


Asunto(s)
Inmunoglobulina A , Neoplasias , Ratones , Humanos , Masculino , Femenino , Animales , Ratones Transgénicos , Inmunoglobulina A/metabolismo , Ratones SCID , Ratones Endogámicos C57BL , Receptores Fc
6.
Cells ; 11(21)2022 10 27.
Artículo en Inglés | MEDLINE | ID: mdl-36359801

RESUMEN

Neutrophils are crucial innate immune cells but also play key roles in various diseases, such as cancer, where they can perform both pro- and anti-tumorigenic functions. To study the function of neutrophils in vivo, these cells are often depleted using Ly-6G or Gr-1 depleting antibodies or genetic "knockout" models. However, these methods have several limitations, being only partially effective, effective for a short term, and lacking specificity or the ability to conditionally deplete neutrophils. Here, we describe the use of a novel murinized Ly-6G (1A8) antibody. The murinized Ly-6G antibody is of the mouse IgG2a isotype, which is the only isotype that can bind all murine Fcγ receptors and C1q and is, therefore, able to activate antibody-dependent cellular cytotoxicity (ADCC), antibody-dependent phagocytosis (ADCP) and complement-dependent cytotoxicity (CDC) pathways. We show that this mouse-Ly-6G antibody shows efficient, long-term, and near-complete (>90%) neutrophil depletion in the peripheral blood of C57Bl6/J, Balb/c, NXG and SCID mice for up to at least four weeks, using a standardized neutrophil depletion strategy. In addition, we show that neutrophils are efficiently depleted in the blood and tumor tissue of IMR32 tumor-bearing SCID mice, analyzed six weeks after the start of the treatment.


Asunto(s)
Antígenos Ly , Neutrófilos , Ratones , Animales , Neutrófilos/metabolismo , Antígenos Ly/metabolismo , Ratones SCID , Anticuerpos Monoclonales/metabolismo , Ratones Endogámicos C57BL , Ratones Endogámicos BALB C
7.
Blood Adv ; 5(19): 3807-3820, 2021 10 12.
Artículo en Inglés | MEDLINE | ID: mdl-34525171

RESUMEN

Blockade of the CD47-SIRPα axis improves lymphoma cell killing by myeloid effector cells, which is an important effector mechanism for CD20 antibodies in vivo. The approved CD20 antibodies rituximab, ofatumumab, and obinutuzumab are of human immunoglobulin G1 (IgG1) isotype. We investigated the impact of the variable regions of these 3 CD20 antibodies when expressed as human IgA2 isotype variants. All 3 IgA2 antibodies mediated antibody-dependent cellular phagocytosis (ADCP) by macrophages and antibody-dependent cellular cytotoxicity (ADCC) by polymorphonuclear cells. Both effector mechanisms were significantly enhanced in the presence of a CD47-blocking antibody or by glutaminyl cyclase inhibition to interfere with CD47-SIRPα interactions. Interestingly, an IgA2 variant of obinutuzumab (OBI-IgA2) was consistently more potent than an IgA2 variant of rituximab (RTX-IgA2) or an IgA2 variant of ofatumumab (OFA-IgA2) in triggering ADCC. Furthermore, we observed more effective direct tumor cell killing by OBI-IgA2 compared with RTX-IgA2 and OFA-IgA2, which was caspase independent and required a functional cytoskeleton. IgA2 variants of all 3 antibodies triggered complement-dependent cytotoxicity, with OBI-IgA2 being less effective than RTX-IgA2 and OFA-IgA2. When we investigated the therapeutic efficacy of the CD20 IgA2 antibodies in different in vivo models, OBI-IgA2 was therapeutically more effective than RTX-IgA2 or OFA-IgA2. In vivo efficacy required the presence of a functional IgA receptor on effector cells and was independent of complement activation or direct lymphoma cell killing. These data characterize the functional activities of human IgA2 antibodies against CD20, which were affected by the selection of the respective variable regions. OBI-IgA2 proved particularly effective in vitro and in vivo, which may be relevant in the context of CD47-SIRPα blockade.


Asunto(s)
Antígenos CD20 , Inmunoglobulina A , Citotoxicidad Celular Dependiente de Anticuerpos , Humanos , Inmunoglobulina G , Rituximab
8.
Cancer Sci ; 112(8): 3029-3040, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-34058788

RESUMEN

Integrin associated protein (CD47) is an important target in immunotherapy, as it is expressed as a "don't eat me" signal on many tumor cells. Interference with its counter molecule signal regulatory protein alpha (SIRPα), expressed on myeloid cells, can be achieved with blocking Abs, but also by inhibiting the enzyme glutaminyl cyclase (QC) with small molecules. Glutaminyl cyclase inhibition reduces N-terminal pyro-glutamate formation of CD47 at the SIRPα binding site. Here, we investigated the impact of QC inhibition on myeloid effector cell-mediated tumor cell killing by epidermal growth factor receptor (EGFR) Abs and the influence of Ab isotypes. SEN177 is a QC inhibitor and did not interfere with EGFR Ab-mediated direct growth inhibition, complement-dependent cytotoxicity, or Ab-dependent cell-mediated cytotoxicity (ADCC) by mononuclear cells. However, binding of a human soluble SIRPα-Fc fusion protein to SEN177 treated cancer cells was significantly reduced in a dose-dependent manner, suggesting that pyro-glutamate formation of CD47 was affected. Glutaminyl cyclase inhibition in tumor cells translated into enhanced Ab-dependent cellular phagocytosis by macrophages and enhanced ADCC by polymorphonuclear neutrophilic granulocytes. Polymorphonuclear neutrophilic granulocyte-mediated ADCC was significantly more effective with EGFR Abs of human IgG2 or IgA2 isotypes than with IgG1 Abs, proposing that the selection of Ab isotypes could critically affect the efficacy of Ab therapy in the presence of QC inhibition. Importantly, QC inhibition also enhanced the therapeutic efficacy of EGFR Abs in vivo. Together, these results suggest a novel approach to specifically enhance myeloid effector cell-mediated efficacy of EGFR Abs by orally applicable small molecule QC inhibitors.


Asunto(s)
Aminoaciltransferasas/antagonistas & inhibidores , Antígenos de Diferenciación/química , Antineoplásicos Inmunológicos/administración & dosificación , Antígeno CD47/metabolismo , Neoplasias/tratamiento farmacológico , Receptores Inmunológicos/química , Bibliotecas de Moléculas Pequeñas/administración & dosificación , Animales , Antígenos de Diferenciación/metabolismo , Antineoplásicos Inmunológicos/farmacología , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Cetuximab/administración & dosificación , Cetuximab/farmacología , Sinergismo Farmacológico , Femenino , Células HEK293 , Humanos , Masculino , Ratones , Neoplasias/metabolismo , Panitumumab/administración & dosificación , Panitumumab/farmacología , Unión Proteica/efectos de los fármacos , Receptores Inmunológicos/metabolismo , Ensayos Antitumor por Modelo de Xenoinjerto
9.
MAbs ; 12(1): 1795505, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32744145

RESUMEN

Current combination therapies elicit high response rates in B cell malignancies, often using CD20 antibodies as the backbone of therapy. However, many patients eventually relapse or develop progressive disease. Therefore, novel CD20 antibodies combining multiple effector mechanisms were generated. To study whether neutrophil-mediated destruction of B cell malignancies can be added to the arsenal of effector mechanisms, we chimerized a panel of five previously described murine CD20 antibodies to the human IgG1, IgA1 and IgA2 isotype. Of this panel, we assessed in vitro antibody-dependent cell-mediated cytotoxicity (ADCC), complement-dependent cytotoxicity (CDC) and direct cell death induction capacity and studied the efficacy in two different in vivo mouse models. IgA antibodies outperformed IgG1 antibodies in neutrophil-mediated killing in vitro, both against CD20-expressing cell lines and primary patient material. In these assays, we observed loss of CD19 with both IgA and IgG antibodies. Therefore, we established a novel method to improve the assessment of B-cell depletion by CD20 antibodies by including CD24 as a stable cell marker. Subsequently, we demonstrated that only IgA antibodies were able to reduce B cell numbers in this context. Additionally, IgA antibodies showed efficacy in both an intraperitoneal tumor model with EL4 cells expressing huCD20 and in an adoptive transfer model with huCD20-expressing B cells. Taken together, we show that IgA, like IgG, can induce ADCC and CDC, but additionally triggers neutrophils to kill (malignant) B cells. We conclude that antibodies of the IgA isotype offer an attractive repertoire of effector mechanisms for the treatment of CD20-expressing malignancies.


Asunto(s)
Citotoxicidad Celular Dependiente de Anticuerpos , Antígenos CD20/inmunología , Linfocitos B/inmunología , Neoplasias Hematológicas/inmunología , Inmunoglobulina A/farmacología , Proteínas de Neoplasias/inmunología , Neoplasias Experimentales/inmunología , Activación Neutrófila/efectos de los fármacos , Neutrófilos/inmunología , Animales , Linfocitos B/patología , Neoplasias Hematológicas/tratamiento farmacológico , Neoplasias Hematológicas/patología , Humanos , Inmunoglobulina A/inmunología , Ratones , Ratones Transgénicos , Proteínas de Neoplasias/antagonistas & inhibidores , Neoplasias Experimentales/tratamiento farmacológico , Neoplasias Experimentales/patología , Neutrófilos/patología , Ensayos Antitumor por Modelo de Xenoinjerto
10.
Front Immunol ; 11: 1701, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32849597

RESUMEN

Respiratory syncytial virus (RSV) infections represent a major burden of disease in infants and are the second most prevalent cause of death worldwide. Human milk immunoglobulins provide protection against RSV. However, many infants depend on processed bovine milk-based nutrition, which lacks intact immunoglobulins. We investigated the potential of bovine antibodies to neutralize human RSV and facilitate-cell immune activation. We show cow's milk IgG (bIgG) and Intravenous Immunoglobulin (IVIG) have a similar RSV neutralization capacity, even though bIgG has a lower pre-F to post-F binding ratio compared to human IVIG, with the majority of bIgG binding to pre-F. RSV is better neutralized with human IVIG. Consequently, we enriched RSV specific T cells by culturing human PBMC with a mixture of RSV peptides, and used these T cells to study the effect of bIgG and IVIG on the activation of pre-F-pecific T cells. bIgG facilitated in vitro T cell activation in a similar manner as IVIG. Moreover, bIgG was able to mediate T cell activation and internalization of pathogens, which are prerequisites for inducing an adaptive viral response. Using in vivo mouse experiments, we showed that bIgG is able to bind the murine activating IgG Fc Receptors (FcγR), but not the inhibiting FcγRII. Intranasal administration of the monoclonal antibody palivizumab, but also of bIgG and IVIG prevented RSV infection in mice. The concentration of bIgG needed to prevent infection was ~5-fold higher compared to IVIG. In conclusion, the data presented here indicate that functionally active bIgG facilitates adaptive antiviral T cell responses and prevents RSV infection in vitro and in vivo.


Asunto(s)
Antivirales/farmacología , Inmunoglobulina G/farmacología , Activación de Linfocitos/efectos de los fármacos , Infecciones por Virus Sincitial Respiratorio/prevención & control , Virus Sincitial Respiratorio Humano/efectos de los fármacos , Linfocitos T/efectos de los fármacos , Animales , Antígenos Virales/inmunología , Antígenos Virales/metabolismo , Antivirales/aislamiento & purificación , Bovinos , Línea Celular , Calostro/inmunología , Modelos Animales de Enfermedad , Epítopos , Femenino , Interacciones Huésped-Patógeno , Humanos , Inmunoglobulina G/aislamiento & purificación , Inmunoglobulinas Intravenosas/farmacología , Ratones Endogámicos C57BL , Ratones Noqueados , Fagocitosis/efectos de los fármacos , Embarazo , Receptores de IgG/genética , Receptores de IgG/metabolismo , Infecciones por Virus Sincitial Respiratorio/inmunología , Infecciones por Virus Sincitial Respiratorio/metabolismo , Infecciones por Virus Sincitial Respiratorio/virología , Virus Sincitial Respiratorio Humano/inmunología , Virus Sincitial Respiratorio Humano/patogenicidad , Linfocitos T/inmunología , Linfocitos T/metabolismo , Linfocitos T/virología
11.
Cancer Immunol Res ; 8(1): 120-130, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31690649

RESUMEN

Therapeutic monoclonal antibodies (mAb), directed toward either tumor antigens or inhibitory checkpoints on immune cells, are effective in cancer therapy. Increasing evidence suggests that the therapeutic efficacy of these tumor antigen-targeting mAbs is mediated-at least partially-by myeloid effector cells, which are controlled by the innate immune-checkpoint interaction between CD47 and SIRPα. We and others have previously demonstrated that inhibiting CD47-SIRPα interactions can substantially potentiate antibody-dependent cellular phagocytosis and cytotoxicity of tumor cells by IgG antibodies both in vivo and in vitro IgA antibodies are superior in killing cancer cells by neutrophils compared with IgG antibodies with the same variable regions, but the impact of CD47-SIRPα on IgA-mediated killing has not been investigated. Here, we show that checkpoint inhibition of CD47-SIRPα interactions further enhances destruction of IgA antibody-opsonized cancer cells by human neutrophils. This was shown for multiple tumor types and IgA antibodies against different antigens, i.e., HER2/neu and EGFR. Consequently, combining IgA antibodies against HER2/neu or EGFR with SIRPα inhibition proved to be effective in eradicating cancer cells in vivo In a syngeneic in vivo model, the eradication of cancer cells was predominantly mediated by granulocytes, which were actively recruited to the tumor site by SIRPα blockade. We conclude that IgA-mediated tumor cell destruction can be further enhanced by CD47-SIRPα checkpoint inhibition. These findings provide a basis for targeting CD47-SIRPα interactions in combination with IgA therapeutic antibodies to improve their potential clinical efficacy in tumor patients.


Asunto(s)
Antineoplásicos Inmunológicos/farmacología , Neoplasias de la Mama/inmunología , Neoplasias de la Mama/terapia , Antígeno CD47/antagonistas & inhibidores , Inmunoglobulina A/inmunología , Neutrófilos/inmunología , Receptores Inmunológicos/antagonistas & inhibidores , Animales , Anticuerpos Monoclonales/farmacología , Citotoxicidad Celular Dependiente de Anticuerpos/inmunología , Antígenos de Diferenciación/inmunología , Neoplasias de la Mama/patología , Antígeno CD47/inmunología , Línea Celular Tumoral , Receptores ErbB/antagonistas & inhibidores , Femenino , Humanos , Inmunoterapia/métodos , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos NOD , Ratones SCID , Fagocitosis/efectos de los fármacos , Fagocitosis/inmunología , Receptor ErbB-2/antagonistas & inhibidores , Receptores Inmunológicos/inmunología , Ensayos Antitumor por Modelo de Xenoinjerto
12.
Front Immunol ; 10: 704, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31031746

RESUMEN

Antibody therapy of cancer is increasingly used in the clinic and has improved patient's life expectancy. Except for immune checkpoint inhibition, the mode of action of many antibodies is to recognize overexpressed or specific tumor antigens and initiate either direct F(ab')2-mediated tumor cell killing, or Fc-mediated effects such as complement-dependent cytotoxicity (CDC) and antibody-dependent cell-mediated cytotoxicity/phagocytosis (ADCC/P) after binding to activating Fc receptors. All antibodies used in the clinic are of the IgG isotype. The IgA isotype can, however, also elicit powerful anti-tumor responses through engagement of the activating Fc receptor for monomeric IgA (FcαRI). In addition to monocytes, macrophages and eosinophils as FcαRI expressing immune cells, neutrophils are especially vigorous in eliminating IgA opsonized tumor cells. However, with IgG as single agent it appears almost impossible to activate neutrophils efficiently, as we have visualized by live cell imaging of tumor cell killing. In this study, we investigated Fc receptor expression, binding and signaling to clarify why triggering of neutrophils by IgA is more efficient than by IgG. FcαRI expression on neutrophils is ~2 times and ~20 times lower than that of Fcγ receptors FcγRIIa and FcγRIIIb, but still, binding of neutrophils to IgA- or IgG-coated surfaces was similar. In addition, our data suggest that IgA-mediated binding of neutrophils is more stable compared to IgG. IgA engagement of neutrophils elicited stronger Fc receptor signaling than IgG as indicated by measuring the p-ERK signaling molecule. We propose that the higher stoichiometry of IgA to the FcαR/FcRγ-chain complex, activating four ITAMs (Immunoreceptor Tyrosine-based Activating Motifs) compared to a single ITAM for FcγRIIa, combined with a possible decoy role of the highly expressed FcγRIIIb, explains why IgA is much better than IgG at triggering tumor cell killing by neutrophils. We anticipate that harnessing the vast population of neutrophils by the use of IgA monoclonal antibodies can be a valuable addition to the growing arsenal of antibody-based therapeutics for cancer treatment.


Asunto(s)
Citotoxicidad Celular Dependiente de Anticuerpos , Inmunoglobulina A/inmunología , Neoplasias/inmunología , Neoplasias/terapia , Neutrófilos/inmunología , Receptores Fc/inmunología , Muerte Celular/inmunología , Línea Celular Tumoral , Humanos , Inmunoglobulina G/inmunología , Inmunoterapia , Modelos Inmunológicos , Neoplasias/patología , Transducción de Señal/inmunología
13.
Nat Med ; 25(4): 612-619, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30833751

RESUMEN

Cancer cells can evade immune surveillance through the expression of inhibitory ligands that bind their cognate receptors on immune effector cells. Expression of programmed death ligand 1 in tumor microenvironments is a major immune checkpoint for tumor-specific T cell responses as it binds to programmed cell death protein-1 on activated and dysfunctional T cells1. The activity of myeloid cells such as macrophages and neutrophils is likewise regulated by a balance between stimulatory and inhibitory signals. In particular, cell surface expression of the CD47 protein creates a 'don't eat me' signal on tumor cells by binding to SIRPα expressed on myeloid cells2-5. Using a haploid genetic screen, we here identify glutaminyl-peptide cyclotransferase-like protein (QPCTL) as a major component of the CD47-SIRPα checkpoint. Biochemical analysis demonstrates that QPCTL is critical for pyroglutamate formation on CD47 at the SIRPα binding site shortly after biosynthesis. Genetic and pharmacological interference with QPCTL activity enhances antibody-dependent cellular phagocytosis and cellular cytotoxicity of tumor cells. Furthermore, interference with QPCTL expression leads to a major increase in neutrophil-mediated killing of tumor cells in vivo. These data identify QPCTL as a novel target to interfere with the CD47 pathway and thereby augment antibody therapy of cancer.


Asunto(s)
Aminoaciltransferasas/metabolismo , Antígenos de Diferenciación/metabolismo , Antígeno CD47/metabolismo , Inmunoterapia , Neoplasias/inmunología , Neoplasias/terapia , Receptores Inmunológicos/metabolismo , Aminoaciltransferasas/antagonistas & inhibidores , Animales , Línea Celular Tumoral , Membrana Celular/metabolismo , Humanos , Ratones Transgénicos , Neoplasias/patología , Proteínas Opsoninas/metabolismo , Ácido Pirrolidona Carboxílico/metabolismo
14.
Mol Cancer Ther ; 18(1): 75-88, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30282813

RESUMEN

Three FDA-approved epidermal growth factor receptor (EGFR) antibodies (cetuximab, panitumumab, necitumumab) are clinically available to treat patients with different types of cancers. Interestingly, panitumumab is of human IgG2 isotype, which is often considered to have limited immune effector functions. Unexpectedly, our studies unraveled that human IgG2 antibodies against EGFR mediated effective CDC when combined with another noncross-blocking EGFR antibody. This second antibody could be of human IgG1 or IgG2 isotype. Furthermore, EGFR antibodies of human IgG2 isotype were highly potent in recruiting myeloid effector cells such as M1 macrophages and PMN for tumor cell killing by ADCC. Tumor cell killing by PMN was more effective with IgG2 than with IgG1 antibodies if tumor cells expressed lower levels of EGFR. Additionally, lower expression levels of the "don't eat me" molecule CD47 on tumor cells enabled ADCC also by M2 macrophages, and improved PMN and macrophage-mediated ADCC. A TCGA enquiry revealed broadly varying CD47 expression levels across different solid tumor types. Together, these results demonstrate that human IgG2 antibodies against EGFR can promote significant Fc-mediated effector functions, which may contribute to their clinical efficacy. The future challenge will be to identify clinical situations in which myeloid effector cells can optimally contribute to antibody efficacy.


Asunto(s)
Antineoplásicos Inmunológicos/farmacología , Inmunoglobulina G/farmacología , Células Mieloides/inmunología , Neoplasias/inmunología , Anticuerpos Monoclonales/farmacología , Anticuerpos Monoclonales/uso terapéutico , Anticuerpos Monoclonales Humanizados , Citotoxicidad Celular Dependiente de Anticuerpos/efectos de los fármacos , Antineoplásicos Inmunológicos/uso terapéutico , Antígeno CD47/metabolismo , Línea Celular Tumoral , Cetuximab/farmacología , Cetuximab/uso terapéutico , Receptores ErbB/antagonistas & inhibidores , Humanos , Inmunoglobulina G/uso terapéutico , Neoplasias/tratamiento farmacológico , Panitumumab/farmacología , Panitumumab/uso terapéutico
15.
MAbs ; 10(3): 453-462, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29553863

RESUMEN

Respiratory syncytial virus (RSV) infection is a leading cause of hospitalization and mortality in young children. Protective therapy options are limited. Currently, palivizumab, a monoclonal IgG1 antibody, is the only licensed drug for RSV prophylaxis, although other IgG antibody candidates are being evaluated. However, at the respiratory mucosa, IgA antibodies are most abundant and act as the first line of defense against invading pathogens. Therefore, it would be logical to explore the potential of recombinant human IgA antibodies to protect against viral respiratory infection, but very little research on the topic has been published. Moreover, it is unknown whether human antibodies of the IgA isotype are better suited than those of the IgG isotype as antiviral drugs to combat respiratory infections. To address this, we generated various human IgA antibody formats of palivizumab and motavizumab, two well-characterized human IgG1 anti-RSV antibodies. We evaluated their efficacy to prevent RSV infection in vitro and in vivo and found similar, but somewhat decreased efficacy for different IgA subclasses and formats. Thus, reformatting palivizumab or motavizumab into IgA reduces the antiviral potency of either antibody. Moreover, our results indicate that the efficacy of intranasal IgA prophylaxis against RSV infection in human FcαRI transgenic mice is independent of Fc receptor expression.


Asunto(s)
Anticuerpos Monoclonales Humanizados , Anticuerpos Antivirales , Inmunoglobulina A , Inmunoglobulina G , Palivizumab , Infecciones por Virus Sincitial Respiratorio , Virus Sincitiales Respiratorios/inmunología , Animales , Anticuerpos Monoclonales Humanizados/genética , Anticuerpos Monoclonales Humanizados/inmunología , Anticuerpos Monoclonales Humanizados/farmacología , Anticuerpos Antivirales/genética , Anticuerpos Antivirales/inmunología , Anticuerpos Antivirales/farmacología , Línea Celular , Humanos , Inmunoglobulina A/genética , Inmunoglobulina A/inmunología , Inmunoglobulina A/farmacología , Inmunoglobulina G/genética , Inmunoglobulina G/inmunología , Inmunoglobulina G/farmacología , Ratones , Ratones Endogámicos BALB C , Ratones Transgénicos , Palivizumab/genética , Palivizumab/inmunología , Palivizumab/farmacología , Ingeniería de Proteínas , Infecciones por Virus Sincitial Respiratorio/tratamiento farmacológico , Infecciones por Virus Sincitial Respiratorio/genética , Infecciones por Virus Sincitial Respiratorio/inmunología
17.
Cell Death Dis ; 7(8): e2345, 2016 08 25.
Artículo en Inglés | MEDLINE | ID: mdl-27560714

RESUMEN

Pro-survival BCL-2 family members protect cells from programmed cell death that can be induced by multiple internal or external cues. Within the haematopoietic lineages, the BCL-2 family members BCL-2, BCL-XL and MCL-1 are known to support cell survival but the individual and overlapping roles of these pro-survival BCL-2 proteins for the persistence of individual leukocyte subsets in vivo has not yet been determined. By combining inducible knockout mouse models with the BH3-mimetic compound ABT-737, which inhibits BCL-2, BCL-XL and BCL-W, we found that dependency on MCL-1, BCL-XL or BCL-2 expression changes during B-cell development. We show that BCL-XL expression promotes survival of immature B cells, expression of BCL-2 is important for survival of mature B cells and long-lived plasma cells (PC), and expression of MCL-1 is important for survival throughout B-cell development. These data were confirmed with novel highly specific BH3-mimetic compounds that target either BCL-2, BCL-XL or MCL-1. In addition, we observed that combined inhibition of these pro-survival proteins acts in concert to delete specific B-cell subsets. Reduced expression of MCL-1 further sensitized immature as well as transitional B cells and splenic PC to loss of BCL-XL expression. More markedly, loss of MCL-1 greatly sensitizes PC populations to BCL-2 inhibition using ABT-737, even though the total wild-type PC pool in the spleen is not significantly affected by this drug and the bone marrow (BM) PC population only slightly. Combined loss or inhibition of MCL-1 and BCL-2 reduced the numbers of established PC >100-fold within days. Our data suggest that combination treatment targeting these pro-survival proteins could be advantageous for treatment of antibody-mediated autoimmune diseases and B-cell malignancies.


Asunto(s)
Linfocitos B/metabolismo , Subgrupos Linfocitarios/metabolismo , Proteína 1 de la Secuencia de Leucemia de Células Mieloides/metabolismo , Proteína bcl-X/metabolismo , Animales , Antígeno de Maduración de Linfocitos B/metabolismo , Linfocitos B/efectos de los fármacos , Compuestos de Bifenilo/farmacología , Subgrupos Linfocitarios/efectos de los fármacos , Ratones Endogámicos C57BL , Modelos Biológicos , Nitrofenoles/farmacología , Piperazinas/farmacología , Células Plasmáticas/efectos de los fármacos , Células Plasmáticas/metabolismo , Sulfonamidas/farmacología
18.
J Immunol ; 197(3): 807-13, 2016 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-27316683

RESUMEN

Emerging evidence suggests that FcγR-mediated cross-linking of tumor-bound mAbs may induce signaling in tumor cells that contributes to their therapeutic activity. In this study, we show that daratumumab (DARA), a therapeutic human CD38 mAb with a broad-spectrum killing activity, is able to induce programmed cell death (PCD) of CD38(+) multiple myeloma tumor cell lines when cross-linked in vitro by secondary Abs or via an FcγR. By comparing DARA efficacy in a syngeneic in vivo tumor model using FcRγ-chain knockout or NOTAM mice carrying a signaling-inactive FcRγ-chain, we found that the inhibitory FcγRIIb as well as activating FcγRs induce DARA cross-linking-mediated PCD. In conclusion, our in vitro and in vivo data show that FcγR-mediated cross-linking of DARA induces PCD of CD38-expressing multiple myeloma tumor cells, which potentially contributes to the depth of response observed in DARA-treated patients and the drug's multifaceted mechanisms of action.


Asunto(s)
Anticuerpos Monoclonales/farmacología , Antineoplásicos/farmacología , Apoptosis/efectos de los fármacos , Mieloma Múltiple/inmunología , Receptores de IgG/inmunología , ADP-Ribosil Ciclasa 1 , Animales , Citotoxicidad Celular Dependiente de Anticuerpos/inmunología , Modelos Animales de Enfermedad , Humanos , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Receptores de IgG/efectos de los fármacos , Células Tumorales Cultivadas
19.
Cancer Res ; 76(2): 403-17, 2016 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-26634925

RESUMEN

Antibodies of IgA isotype effectively engage myeloid effector cells for cancer immunotherapy. Here, we describe preclinical studies with an Fc engineered IgA2m(1) antibody containing the variable regions of the EGFR antibody cetuximab. Compared with wild-type IgA2m(1), the engineered molecule lacked two N-glycosylation sites (N166 and N337), two free cysteines (C311 and C472), and contained a stabilized heavy and light chain linkage (P221R mutation). This novel molecule displayed improved production rates and biochemical properties compared with wild-type IgA. In vitro, Fab- and Fc-mediated effector functions, such as inhibition of ligand binding, receptor modulation, and engagement of myeloid effector cells for antibody-dependent cell-mediated cytotoxicity, were similar between wild-type and engineered IgA2. The engineered antibody displayed lower levels of terminal galactosylation leading to reduced asialoglycoprotein-receptor binding and to improved pharmacokinetic properties. In a long-term in vivo model against EGFR-positive cancer cells, improved serum half-life translated into higher efficacy of the engineered molecule, which required myeloid cells expressing human FcαRI for its full efficacy. However, Fab-mediated effector functions contributed to the in vivo efficacy because the novel IgA antibody demonstrated therapeutic activity also in non-FcαRI transgenic mice. Together, these results demonstrate that engineering of an IgA antibody can significantly improve its pharmacokinetics and its therapeutic efficacy to inhibit tumor growth in vivo.


Asunto(s)
Anticuerpos Antiidiotipos/uso terapéutico , Receptores ErbB/inmunología , Inmunoterapia/métodos , Células Mieloides/metabolismo , Animales , Anticuerpos Antiidiotipos/administración & dosificación , Diferenciación Celular , Receptores ErbB/metabolismo , Humanos , Ratones , Ratones Endogámicos BALB C , Ratones SCID , Ratones Transgénicos , Transfección
20.
MAbs ; 8(1): 87-98, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26466856

RESUMEN

Antibody therapy is a validated treatment approach for several malignancies. All currently clinically applied therapeutic antibodies (Abs) are of the IgG isotype. However, not all patients respond to this therapy and relapses can occur. IgA represents an alternative isotype for antibody therapy that engages FcαRI expressing myeloid effector cells, such as neutrophils and monocytes. IgA Abs have been shown to effectively kill tumor cells both in vitro and in vivo. However, due to the short half-life of IgA Abs in mice, daily injections are required to reach an effect comparable to IgG Abs. The relatively long half-life of IgG Abs and serum albumin arises from their capability of interacting with the neonatal Fc receptor (FcRn). As IgA Abs lack a binding site for FcRn, we generated IgA Abs with the variable regions of the Her2-specific Ab trastuzumab and attached an albumin-binding domain (ABD) to the heavy or light chain (HCABD/LCABD) to extend their serum half-life. These modified Abs were able to bind albumin from different species in vitro. Furthermore, tumor cell lysis of IgA-Her2-LCABD Abs in vitro was similar to unmodified IgA-Her2 Abs. Pharmacokinetic studies in mice revealed that the serum exposure and half-life of the modified IgA-Her2 Abs was extended. In a xenograft mouse model, the modified IgA1 Abs exhibited a slightly, but significantly, improved anti-tumor response compared to the unmodified Ab. In conclusion, empowering IgA Abs with albumin-binding capacity results in in vitro and in vivo functional Abs with an enhanced exposure and prolonged half-life.


Asunto(s)
Antígenos de Histocompatibilidad Clase I/metabolismo , Inmunoglobulina A , Neoplasias Experimentales/tratamiento farmacológico , Receptor ErbB-2/antagonistas & inhibidores , Receptores Fc/metabolismo , Trastuzumab , Animales , Femenino , Semivida , Antígenos de Histocompatibilidad Clase I/genética , Humanos , Inmunoglobulina A/química , Inmunoglobulina A/genética , Inmunoglobulina A/farmacología , Ratones , Ratones Transgénicos , Neoplasias Experimentales/sangre , Estructura Terciaria de Proteína , Receptores Fc/genética , Trastuzumab/química , Trastuzumab/genética , Trastuzumab/farmacología , Ensayos Antitumor por Modelo de Xenoinjerto
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...