RESUMEN
The emergence of hitherto unknown viral pathogens presents a great challenge for researchers to develop effective therapeutics and vaccines within a short time to avoid an uncontrolled global spread, as seen during the coronavirus disease 2019 (COVID-19) pandemic. Therefore, rapid and simple methods to identify immunogenic antigens as potential therapeutical targets are urgently needed for a better pandemic preparedness. To address this problem, we chose the well-characterized Modified Vaccinia virus Ankara (MVA)-T7pol expression system to establish a workflow to identify immunogens when a new pathogen emerges, generate candidate vaccines, and test their immunogenicity in an animal model. By using this system, we detected severe acute respiratory syndrome (SARS) coronavirus 2 (SARS-CoV-2) nucleoprotein (N)-, and spike (S)-specific antibodies in COVID-19 patient sera, which is in line with the current literature and our observations from previous immunogenicity studies. Furthermore, we detected antibodies directed against the SARS-CoV-2-membrane (M) and -ORF3a proteins in COVID-19 patient sera and aimed to generate recombinant MVA candidate vaccines expressing either the M or ORF3a protein. When testing our candidate vaccines in a prime-boost immunization regimen in humanized HLA-A2.1-/HLA-DR1-transgenic H-2 class I-/class II-knockout mice, we were able to demonstrate M- and ORF3a-specific cellular and humoral immune responses. Hence, the established workflow using the MVA-T7pol expression system represents a rapid and efficient tool to identify potential immunogenic antigens and provides a basis for future development of candidate vaccines.
Asunto(s)
Anticuerpos Antivirales , Antígenos Virales , Vacunas contra la COVID-19 , COVID-19 , Prueba de Estudio Conceptual , SARS-CoV-2 , Glicoproteína de la Espiga del Coronavirus , Virus Vaccinia , SARS-CoV-2/inmunología , SARS-CoV-2/genética , Humanos , Animales , COVID-19/inmunología , COVID-19/prevención & control , Virus Vaccinia/inmunología , Virus Vaccinia/genética , Ratones , Anticuerpos Antivirales/inmunología , Anticuerpos Antivirales/sangre , Antígenos Virales/inmunología , Antígenos Virales/genética , Glicoproteína de la Espiga del Coronavirus/inmunología , Glicoproteína de la Espiga del Coronavirus/genética , Inmunoensayo/métodos , Vacunas contra la COVID-19/inmunología , Proteínas de la Nucleocápside de Coronavirus/inmunología , Proteínas de la Nucleocápside de Coronavirus/genéticaRESUMEN
Influenza, a respiratory disease mainly caused by influenza A and B, viruses of the Orthomyxoviridae, is still a burden on our society's health and economic system. Influenza A viruses (IAV) circulate in mammalian and avian populations, causing seasonal outbreaks with high numbers of cases. Due to the high variability in seasonal IAV triggered by antigenic drift, annual vaccination is necessary, highlighting the need for a more broadly protective vaccine against IAV. The safety tested Modified Vaccinia virus Ankara (MVA) is licensed as a third-generation vaccine against smallpox and serves as a potent vector system for the development of new candidate vaccines against different pathogens. Here, we generated and characterized recombinant MVA candidate vaccines that deliver the highly conserved internal nucleoprotein (NP) of IAV under the transcriptional control of five newly designed chimeric poxviral promoters to further increase the immunogenic properties of the recombinant viruses (MVA-NP). Infections of avian cell cultures with the recombinant MVA-NPs demonstrated efficient synthesis of the IAV-NP which was expressed under the control of the five new promoters. Prime-boost or single shot immunizations in C57BL/6 mice readily induced circulating serum antibodies' binding to recombinant IAV-NP and the robust activation of IAV-NP-specific CD8+ T cell responses. Moreover, the MVA-NP candidate vaccines protected C57BL/6 mice against lethal respiratory infection with mouse-adapted IAV (A/Puerto Rico/8/1934/H1N1). Thus, further studies are warranted to evaluate the immunogenicity and efficacy of these recombinant MVA-NP vaccines in other IAV challenge models in more detail.
RESUMEN
The COVID-19 pandemic caused significant human health and economic consequences. Due to the ability of SARS-CoV-2 to spread rapidly and to cause severe disease and mortality in certain population groups, vaccines are essential for controlling the pandemic in the future. Several licensed vaccines have shown improved protection against SARS-CoV-2 after extended-interval prime-boost immunizations in humans. Therefore, in this study, we aimed to compare the immunogenicity of our two Modified Vaccinia virus Ankara (MVA) based COVID-19 candidate vaccines MVA-SARS-2-S and MVA-SARS-2-ST after short- and long-interval prime-boost immunization schedules in mice. We immunized BALB/c mice using 21-day (short-interval) or 56-day (long-interval) prime-boost vaccination protocols and analyzed spike (S)-specific CD8 T cell immunity and humoral immunity. The two schedules induced robust CD8 T cell responses with no significant differences in their magnitude. Furthermore, both candidate vaccines induced comparable levels of total S, and S2-specific IgG binding antibodies. However, MVA-SARS-2-ST consistently elicited higher amounts of S1-, S receptor binding domain (RBD), and SARS-CoV-2 neutralizing antibodies in both vaccination protocols. Overall, we found very comparable immune responses following short- or long-interval immunization. Thus, our results suggest that the chosen time intervals may not be suitable to observe potential differences in antigen-specific immunity when testing different prime-boost intervals with our candidate vaccines in the mouse model. Despite this, our data clearly showed that MVA-SARS-2-ST induced superior humoral immune responses relative to MVA-SARS-2-S after both immunization schedules.
Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , Animales , Ratones , Pandemias , COVID-19/prevención & control , Virus Vaccinia , Vacunación/métodos , Anticuerpos Antivirales , Inmunidad Celular , Inmunidad HumoralRESUMEN
The SARS-CoV-2 spike (S) glycoprotein is synthesized as a large precursor protein and must be activated by proteolytic cleavage into S1 and S2. A recombinant modified vaccinia virus Ankara (MVA) expressing native, full-length S protein (MVA-SARS-2-S) is currently under investigation as a candidate vaccine in phase I clinical studies. Initial results from immunogenicity monitoring revealed induction of S-specific antibodies binding to S2, but low-level antibody responses to the S1 domain. Follow-up investigations of native S antigen synthesis in MVA-SARS-2-S-infected cells revealed limited levels of S1 protein on the cell surface. In contrast, we found superior S1 cell surface presentation upon infection with a recombinant MVA expressing a stabilized version of SARS-CoV-2 S protein with an inactivated S1/S2 cleavage site and K986P and V987P mutations (MVA-SARS-2-ST). When comparing immunogenicity of MVA vector vaccines, mice vaccinated with MVA-SARS-2-ST mounted substantial levels of broadly reactive anti-S antibodies that effectively neutralized different SARS-CoV-2 variants. Importantly, intramuscular MVA-SARS-2-ST immunization of hamsters and mice resulted in potent immune responses upon challenge infection and protected from disease and severe lung pathology. Our results suggest that MVA-SARS-2-ST represents an improved clinical candidate vaccine and that the presence of plasma membrane-bound S1 is highly beneficial to induce protective antibody levels.
Asunto(s)
COVID-19 , Vacunas Virales , Humanos , Ratones , Animales , Inmunogenicidad Vacunal , SARS-CoV-2/genética , Vacunas Virales/genética , COVID-19/prevención & control , Virus Vaccinia/genética , Anticuerpos Antivirales , Anticuerpos NeutralizantesRESUMEN
The urgent need for vaccines against Ebola virus (EBOV) was underscored by the large outbreak in West Africa (2014-2016). Since then, several promising vaccine candidates have been tested in pre-clinical and clinical studies. As a result, two vaccines were approved for human use in 2019/2020, of which one includes a heterologous adenovirus/Modified Vaccinia virus Ankara (MVA) prime-boost regimen. Here, we tested new vaccine candidates based on the recombinant MVA vector, encoding the EBOV nucleoprotein (MVA-EBOV-NP) or glycoprotein (MVA-EBOV-GP) for their efficacy after homologous prime-boost immunization in mice. Our aim was to investigate the role of each antigen in terms of efficacy and correlates of protection. Sera of mice vaccinated with MVA-EBOV-GP were virus-neutralizing and MVA-EBOV-NP immunization readily elicited interferon-γ-producing NP-specific CD8+ T cells. While mock-vaccinated mice succumbed to EBOV infection, all vaccinated mice survived and showed drastically decreased viral loads in sera and organs. In addition, MVA-EBOV-NP vaccinated mice became susceptible to lethal EBOV infection after depletion of CD8+ T cells prior to challenge. This study highlights the potential of MVA-based vaccines to elicit humoral immune responses as well as a strong and protective CD8+ T cell response and contributes to understanding the possible underlying mechanisms.
RESUMEN
Severe acute respiratory syndrome (SARS) coronavirus 2 (SARS-CoV-2) has emerged as the infectious agent causing the pandemic coronavirus disease 2019 (COVID-19) with dramatic consequences for global human health and economics. Previously, we reached clinical evaluation with our vector vaccine based on modified vaccinia virus Ankara (MVA) against the Middle East respiratory syndrome coronavirus (MERS-CoV), which causes an infection in humans similar to SARS and COVID-19. Here, we describe the construction and preclinical characterization of a recombinant MVA expressing full-length SARS-CoV-2 spike (S) protein (MVA-SARS-2-S). Genetic stability and growth characteristics of MVA-SARS-2-S, plus its robust expression of S protein as antigen, make it a suitable candidate vaccine for industrial-scale production. Vaccinated mice produced S-specific CD8+ T cells and serum antibodies binding to S protein that neutralized SARS-CoV-2. Prime-boost vaccination with MVA-SARS-2-S protected mice sensitized with a human ACE2-expressing adenovirus from SARS-CoV-2 infection. MVA-SARS-2-S is currently being investigated in a phase I clinical trial as aspirant for developing a safe and efficacious vaccine against COVID-19.
Asunto(s)
Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/inmunología , Vacunas contra la COVID-19/inmunología , COVID-19/prevención & control , Glicoproteína de la Espiga del Coronavirus/inmunología , Animales , Vacunas contra la COVID-19/normas , Relación Dosis-Respuesta Inmunológica , Humanos , Ratones , Ratones Endogámicos BALB C , SARS-CoV-2 , Glicoproteína de la Espiga del Coronavirus/genética , Linfocitos T , Vacunación , Virus VacciniaRESUMEN
Nipah virus (NiV) is an emerging zoonotic virus that is transmitted by bats to humans and to pigs, causing severe respiratory disease and often fatal encephalitis. Antibodies directed against the NiV-glycoprotein (G) protein are known to play a major role in clearing NiV infection and in providing vaccine-induced protective immunity. More recently, T cells have been also shown to be involved in recovery from NiV infection. So far, relatively little is known about the role of T cell responses and the antigenic targets of NiV-G that are recognized by CD8 T cells. In this study, NiV-G protein served as the target immunogen to activate NiV-specific cellular immune responses. Modified Vaccinia virus Ankara (MVA), a safety-tested strain of vaccinia virus for preclinical and clinical vaccine research, was used for the generation of MVA-NiV-G candidate vaccines expressing different versions of recombinant NiV-G. Overlapping peptides covering the entire NiV-G protein were used to identify major histocompatibility complex class I/II-restricted T cell responses in type I interferon receptor-deficient (IFNAR-/-) mice after vaccination with the MVA-NiV-G candidate vaccines. We have identified an H2-b-restricted nonamer peptide epitope with CD8 T cell antigenicity and a H2-b 15mer with CD4 T cell antigenicity in the NiV-G protein. The identification of this epitope and the availability of the MVA-NiV-G candidate vaccines will help to evaluate NiV-G-specific immune responses and the potential immune correlates of vaccine-mediated protection in the appropriate murine models of NiV-G infection. Of note, a soluble version of NiV-G was advantageous in activating NiV-G-specific cellular immune responses using these peptides.
Asunto(s)
Linfocitos T CD4-Positivos/inmunología , Linfocitos T CD8-positivos/inmunología , Glicoproteínas/inmunología , Virus Nipah/química , Proteínas del Envoltorio Viral/inmunología , Vacunas Virales/inmunología , Animales , Técnicas de Inactivación de Genes , Glicoproteínas/genética , Inmunidad Celular , Ratones , Ratones Endogámicos C57BL , Receptor de Interferón alfa y beta/genética , Solubilidad , Organismos Libres de Patógenos Específicos , Vacunas de ADN , Proteínas del Envoltorio Viral/genética , Vacunas Virales/administración & dosificaciónRESUMEN
Middle East respiratory syndrome coronavirus (MERS-CoV), a novel infectious agent causing severe respiratory disease and death in humans, was first described in 2012. Antibodies directed against the MERS-CoV spike (S) protein are thought to play a major role in controlling MERS-CoV infection and in mediating vaccine-induced protective immunity. In contrast, relatively little is known about the role of T cell responses and the antigenic targets of MERS-CoV that are recognized by CD8+ T cells. In this study, the highly conserved MERS-CoV nucleocapsid (N) protein served as a target immunogen to elicit MERS-CoV-specific cellular immune responses. Modified Vaccinia virus Ankara (MVA), a safety-tested strain of vaccinia virus for preclinical and clinical vaccine research, was used for generating MVA-MERS-N expressing recombinant N protein. Overlapping peptides spanning the whole MERS-CoV N polypeptide were used to identify major histocompatibility complex class I/II-restricted T cell responses in BALB/c mice immunized with MVA-MERS-N. We have identified a H2-d restricted decamer peptide epitope in the MERS-N protein with CD8+ T cell antigenicity. The identification of this epitope, and the availability of the MVA-MERS-N candidate vaccine, will help to evaluate MERS-N-specific immune responses and the potential immune correlates of vaccine-mediated protection in the appropriate murine models of MERS-CoV infection.
Asunto(s)
Linfocitos T CD8-positivos/inmunología , Infecciones por Coronavirus/inmunología , Coronavirus del Síndrome Respiratorio de Oriente Medio/inmunología , Proteínas de la Nucleocápside/inmunología , Animales , Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/inmunología , Epítopos de Linfocito T/inmunología , Femenino , Inmunidad Celular , Ratones , Ratones Endogámicos BALB C , Proteínas de la Nucleocápside/genética , Proteínas Recombinantes/inmunología , Vacunación , Virus Vaccinia/genética , Virus Vaccinia/inmunología , Vacunas Virales/inmunologíaRESUMEN
The highly attenuated Modified Vaccinia virus Ankara (MVA) lacks most of the known vaccinia virus (VACV) virulence and immune evasion genes. Today MVA can serve as a safety-tested next-generation smallpox vaccine. Yet, we still need to learn about regulatory gene functions preserved in the MVA genome, such as the apoptosis inhibitor genes F1L and E3L. Here, we tested MVA vaccine preparations on the basis of the deletion mutant viruses MVA-ΔF1L and MVA-ΔE3L for efficacy against ectromelia virus (ECTV) challenge infections in mice. In non-permissive human tissue culture the MVA deletion mutant viruses produced reduced levels of the VACV envelope antigen B5. Upon mousepox challenge at three weeks after vaccination, MVA-ΔF1L and MVA-ΔE3L exhibited reduced protective capacity in comparison to wildtype MVA. Surprisingly, however, all vaccines proved equally protective against a lethal ECTV infection at two days after vaccination. Accordingly, the deletion mutant MVA vaccines induced high levels of virus-specific CD8+ T cells previously shown to be essential for rapidly protective MVA vaccination. These results suggest that inactivation of the anti-apoptotic genes F1L or E3L modulates the protective capacity of MVA vaccination most likely through the induction of distinct orthopoxvirus specific immunity in the absence of these viral regulatory proteins.
Asunto(s)
Inmunomodulación , Proteínas de Unión al ARN/genética , Vacuna contra Viruela/inmunología , Viruela/inmunología , Viruela/prevención & control , Virus Vaccinia/genética , Proteínas Virales/genética , Animales , Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/inmunología , Linfocitos T CD8-positivos/inmunología , Línea Celular , Modelos Animales de Enfermedad , Femenino , Eliminación de Gen , Regulación Viral de la Expresión Génica , Vectores Genéticos/administración & dosificación , Vectores Genéticos/genética , Humanos , Inmunización , Ratones , Vacuna contra Viruela/administración & dosificaciónRESUMEN
West Nile virus (WNV) cycles between insects and wild birds, and is transmitted via mosquito vectors to horses and humans, potentially causing severe neuroinvasive disease. Modified Vaccinia virus Ankara (MVA) is an advanced viral vector for developing new recombinant vaccines against infectious diseases and cancer. Here, we generated and evaluated recombinant MVA candidate vaccines that deliver WNV envelope (E) antigens and fulfil all the requirements to proceed to clinical testing in humans. Infections of human and equine cell cultures with recombinant MVA demonstrated efficient synthesis and secretion of WNV envelope proteins in mammalian cells non-permissive for MVA replication. Prime-boost immunizations in BALB/c mice readily induced circulating serum antibodies binding to recombinant WNV E protein and neutralizing WNV in tissue culture infections. Vaccinations in HLA-A2.1-/HLA-DR1-transgenic H-2 class I-/class II-knockout mice elicited WNV E-specific CD8+ T cell responses. Moreover, the MVA-WNV candidate vaccines protected C57BL/6 mice against lineage 1 and lineage 2 WNV infection and induced heterologous neutralizing antibodies. Thus, further studies are warranted to evaluate these recombinant MVA-WNV vaccines in other preclinical models and use them as candidate vaccine in humans.
Asunto(s)
Virus Vaccinia , Proteínas del Envoltorio Viral/inmunología , Fiebre del Nilo Occidental/prevención & control , Vacunas contra el Virus del Nilo Occidental/inmunología , Animales , Anticuerpos Neutralizantes/sangre , Anticuerpos Antivirales/sangre , Linfocitos T CD8-positivos/inmunología , Línea Celular , Femenino , Caballos , Humanos , Inmunidad Humoral , Inmunización Secundaria , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Ratones Noqueados , Vacunas Sintéticas/inmunología , Carga Viral , Virus del Nilo OccidentalRESUMEN
Middle East respiratory syndrome coronavirus (MERS-CoV) causes severe respiratory disease in humans. We tested a recombinant modified vaccinia virus Ankara (MVA) vaccine expressing full-length MERS-CoV spike (S) glycoprotein by immunizing BALB/c mice with either intramuscular or subcutaneous regimens. In all cases, MVA-MERS-S induced MERS-CoV-specific CD8(+) T cells and virus-neutralizing antibodies. Vaccinated mice were protected against MERS-CoV challenge infection after transduction with the human dipeptidyl peptidase 4 receptor. This MERS-CoV infection model demonstrates the safety and efficacy of the candidate vaccine.
Asunto(s)
Infecciones por Coronavirus/prevención & control , Coronavirus del Síndrome Respiratorio de Oriente Medio/inmunología , Glicoproteína de la Espiga del Coronavirus/metabolismo , Virus Vaccinia/genética , Vacunas Virales/inmunología , Animales , Anticuerpos Neutralizantes/inmunología , Linfocitos T CD8-positivos/inmunología , Evaluación Preclínica de Medicamentos/métodos , Ratones , Ratones Endogámicos BALB C , Glicoproteína de la Espiga del Coronavirus/inmunología , Vacunas Virales/genéticaRESUMEN
UNLABELLED: Immunization with modified vaccinia virus Ankara (MVA) can rapidly protect mice against lethal ectromelia virus (ECTV) infection, serving as an experimental model for severe systemic infections. Importantly, this early protective capacity of MVA vaccination completely depends on virus-specific cytotoxic CD8(+) T cell responses. We used MVA vaccination in the mousepox challenge model using ECTV infection to investigate the previously unknown factors required to elicit rapid protective T cell immunity in normal C57BL/6 mice and in mice lacking the interferon alpha/beta receptor (IFNAR(-/-)). We found a minimal dose of 10(5) PFU of MVA vaccine fully sufficient to allow robust protection against lethal mousepox, as assessed by the absence of disease symptoms and failure to detect ECTV in organs from vaccinated animals. Moreover, MVA immunization at low dosage also protected IFNAR(-/-) mice, indicating efficient activation of cellular immunity even in the absence of type I interferon signaling. When monitoring for virus-specific CD8(+) T cell responses in mice vaccinated with the minimal protective dose of MVA, we found significantly enhanced levels of antigen-specific T cells in animals that were MVA vaccinated and ECTV challenged compared to mice that were only vaccinated. The initial priming of naive CD8(+) T cells by MVA immunization appears to be highly efficient and, even at low doses, mediates a rapid in vivo burst of pathogen-specific T cells upon challenge. Our findings define striking requirements for protective emergency immunization against severe systemic infections with orthopoxviruses. IMPORTANCE: We demonstrate that single-shot low-dose immunizations with vaccinia virus MVA can rapidly induce T cell-mediated protective immunity against lethal orthopoxvirus infections. Our data provide new evidence for an efficient protective capacity of vaccination with replication-deficient MVA. These data are of important practical relevance for public health, as the effectiveness of a safety-tested, next-generation smallpox vaccine based on MVA is still debated. Furthermore, producing sufficient amounts of vaccine is expected to be a major challenge should an outbreak occur. Moreover, prevention of other infections may require rapidly protective immunization; hence, MVA could be an extremely useful vaccine for delivering heterologous T cell antigens, particularly for infectious diseases that fit a scenario of emergency vaccination.