Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Opt Express ; 32(4): 5885-5897, 2024 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-38439304

RESUMEN

Lensless coherent x-ray imaging techniques have great potential for high-resolution imaging of magnetic systems with a variety of in-situ perturbations. Despite many investigations of ferromagnets, extending these techniques to the study of other magnetic materials, primarily antiferromagnets, is lacking. Here, we demonstrate the first (to our knowledge) study of an antiferromagnet using holographic imaging through the 'holography with extended reference by autocorrelation linear differential operation' technique. Energy-dependent contrast with both linearly and circularly polarized x-rays are demonstrated. Antiferromagnetic domains and topological textures are studied in the presence of applied magnetic fields, demonstrating quasi-cyclic domain reconfiguration up to 500 mT.

2.
Nano Lett ; 23(19): 9073-9079, 2023 Oct 11.
Artículo en Inglés | MEDLINE | ID: mdl-37737821

RESUMEN

In the room-temperature magnetoelectric multiferroic BiFeO3, the noncollinear antiferromagnetic state is coupled to the ferroelectric order, opening applications for low-power electric-field-controlled magnetic devices. While several strategies have been explored to simplify the ferroelectric landscape, here we directly stabilize a single-domain ferroelectric and spin cycloid state in epitaxial BiFeO3 (111) thin films grown on orthorhombic DyScO3 (011). Comparing them with films grown on SrTiO3 (111), we identify anisotropic in-plane strain as a powerful handle for tailoring the single antiferromagnetic state. In this single-domain multiferroic state, we establish the thickness limit of the coexisting electric and magnetic orders and directly visualize the suppression of the spin cycloid induced by the magnetoelectric interaction below the ultrathin limit of 1.4 nm. This as-grown single-domain multiferroic configuration in BiFeO3 thin films opens an avenue both for fundamental investigations and for electrically controlled noncollinear antiferromagnetic spintronics.

3.
Sci Rep ; 13(1): 11711, 2023 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-37474533

RESUMEN

In multilayers of magnetic thin films with perpendicular anisotropy, domain walls can take on hybrid configurations in the vertical direction which minimize the domain wall energy, with Néel walls in the top or bottom layers and Bloch walls in some central layers. These types of textures are theoretically predicted, but their observation has remained challenging until recently, with only a few techniques capable of realizing a three dimensional characterization of their magnetization distribution. Here we perform a field dependent X-ray resonant magnetic scattering measurements on magnetic multilayers exploiting circular dichroism contrast to investigate such structures. Using a combination of micromagnetic and X-ray resonant magnetic scattering simulations along with our experimental results, we characterize the three-dimensional magnetic texture of domain walls, notably the thickness resolved characterization of the size and position of the Bloch part in hybrid walls. We also take a step in advancing the resonant scattering methodology by using measurements performed off the multilayer Bragg angle in order to calibrate the effective absorption of the X-rays, and permitting a quantitative evaluation of the out of plane (z) structure of our samples. Beyond hybrid domain walls, this approach can be used to characterize other periodic chiral structures such as skyrmions, antiskyrmions or even magnetic bobbers or hopfions, in both static and dynamic experiments.

4.
J Phys Condens Matter ; 35(30)2023 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-37059114

RESUMEN

Thin films of the solid solution Nd1-xLaxNiO3are grown in order to study the expected 0 K phase transitions at a specific composition. We experimentally map out the structural, electronic and magnetic properties as a function ofxand a discontinuous, possibly first order, insulator-metal transition is observed at low temperature whenx= 0.2. Raman spectroscopy and scanning transmission electron microscopy show that this is not associated with a correspondingly discontinuous global structural change. On the other hand, results from density functional theory (DFT) and combined DFT and dynamical mean field theory calculations produce a 0 K first order transition at around this composition. We further estimate the temperature-dependence of the transition from thermodynamic considerations and find that a discontinuous insulator-metal transition can be reproduced theoretically and implies a narrow insulator-metal phase coexistence withx. Finally, muon spin rotation (µSR) measurements suggest that there are non-static magnetic moments in the system that may be understood in the context of the first order nature of the 0 K transition and its associated phase coexistence regime.

5.
Phys Rev Lett ; 128(18): 187201, 2022 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-35594103

RESUMEN

We report on the formation of topological defects emerging from the cycloidal antiferromagnetic order at the surface of bulk BiFeO_{3} crystals. Combining reciprocal and real-space magnetic imaging techniques, we first observe, in a single ferroelectric domain, the coexistence of antiferromagnetic domains in which the antiferromagnetic cycloid propagates along different wave vectors. We then show that the direction of these wave vectors is not strictly locked to the preferred crystallographic axes as continuous rotations bridge different wave vectors. At the junctions between the magnetic domains, we observe topological line defects identical to those found in a broad variety of lamellar physical systems with rotational symmetries. Our work establishes the presence of these magnetic objects at room temperature in the multiferroic antiferromagnet BiFeO_{3}, offering new possibilities for their use in spintronics.

6.
J Synchrotron Radiat ; 29(Pt 2): 594, 2022 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-35254326

RESUMEN

The name of one of the authors in the article by Léveillé et al. [(2022), J. Synchrotron Rad. 29, 103-110] is corrected.

7.
Nat Commun ; 13(1): 1412, 2022 Mar 17.
Artículo en Inglés | MEDLINE | ID: mdl-35301298

RESUMEN

Non-collinear spin textures in ferromagnetic ultrathin films are attracting a renewed interest fueled by possible fine engineering of several magnetic interactions, notably the interfacial Dzyaloshinskii-Moriya interaction. This allows for the stabilization of complex chiral spin textures such as chiral magnetic domain walls (DWs), spin spirals, and magnetic skyrmions among others. We report here on the behavior of chiral DWs at ultrashort timescale after optical pumping in perpendicularly magnetized asymmetric multilayers. The magnetization dynamics is probed using time-resolved circular dichroism in x-ray resonant magnetic scattering (CD-XRMS). We observe a picosecond transient reduction of the CD-XRMS, which is attributed to the spin current-induced coherent and incoherent torques within the continuously varying spin texture of the DWs. We argue that a specific demagnetization of the inner structure of the DW induces a flow of spins from the interior of the neighboring magnetic domains. We identify this time-varying change of the DW texture shortly after the laser pulse as a distortion of the homochiral Néel shape toward a transient mixed Bloch-Néel-Bloch texture along a direction transverse to the DW.

8.
J Synchrotron Radiat ; 29(Pt 1): 103-110, 2022 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-34985427

RESUMEN

The latest Complementary Metal Oxide Semiconductor (CMOS) 2D sensors now rival the performance of state-of-the-art photon detectors for optical application, combining a high-frame-rate speed with a wide dynamic range. While the advent of high-repetition-rate hard X-ray free-electron lasers (FELs) has boosted the development of complex large-area fast CCD detectors in the extreme ultraviolet (EUV) and soft X-ray domains, scientists lacked such high-performance 2D detectors, principally due to the very poor efficiency limited by the sensor processing. Recently, a new generation of large back-side-illuminated scientific CMOS sensors (CMOS-BSI) has been developed and commercialized. One of these cost-efficient and competitive sensors, the GSENSE400BSI, has been implemented and characterized, and the proof of concept has been carried out at a synchrotron or laser-based X-ray source. In this article, we explore the feasibility of single-shot ultra-fast experiments at FEL sources operating in the EUV/soft X-ray regime with an AXIS-SXR camera equipped with the GSENSE400BSI-TVISB sensor. We illustrate the detector capabilities by performing a soft X-ray magnetic scattering experiment at the DiProi end-station of the FERMI FEL. These measurements show the possibility of integrating this camera for collecting single-shot images at the 50 Hz operation mode of FERMI with a cropped image size of 700 × 700 pixels. The efficiency of the sensor at a working photon energy of 58 eV and the linearity over the large FEL intensity have been verified. Moreover, on-the-fly time-resolved single-shot X-ray resonant magnetic scattering imaging from prototype Co/Pt multilayer films has been carried out with a time collection gain of 30 compared to the classical start-and-stop acquisition method performed with the conventional CCD-BSI detector available at the end-station.

9.
Struct Dyn ; 8(3): 034305, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-34235231

RESUMEN

During the last two decades, a variety of models have been developed to explain the ultrafast quenching of magnetization following femtosecond optical excitation. These models can be classified into two broad categories, relying either on a local or a non-local transfer of angular momentum. The acquisition of the magnetic depth profiles with femtosecond resolution, using time-resolved x-ray resonant magnetic reflectivity, can distinguish local and non-local effects. Here, we demonstrate the feasibility of this technique in a pump-probe geometry using a custom-built reflectometer at the FLASH2 free-electron laser (FEL). Although FLASH2 is limited to the production of photons with a fundamental wavelength of 4 nm ( ≃ 310 eV ), we were able to probe close to the Fe L 3 edge ( 706.8 eV ) of a magnetic thin film employing the third harmonic of the FEL. Our approach allows us to extract structural and magnetic asymmetry signals revealing two dynamics on different time scales which underpin a non-homogeneous loss of magnetization and a significant dilation of 2 Å of the layer thickness followed by oscillations. Future analysis of the data will pave the way to a full quantitative description of the transient magnetic depth profile combining femtosecond with nanometer resolution, which will provide further insight into the microscopic mechanisms underlying ultrafast demagnetization.

10.
J Synchrotron Radiat ; 27(Pt 6): 1577-1589, 2020 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-33147182

RESUMEN

The impressive progress in the performance of synchrotron radiation sources is nowadays driven by the so-called `ultimate storage ring' projects which promise an unprecedented improvement in brightness. Progress on the detector side has not always been at the same pace, especially as far as soft X-ray 2D detectors are concerned. While the most commonly used detectors are still based on microchannel plates or CCD technology, recent developments of CMOS (complementary metal oxide semiconductor)-type detectors will play an ever more important role as 2D detectors in the soft X-ray range. This paper describes the capabilities and performance of a camera equipped with a newly commercialized backside-illuminated scientific CMOS (sCMOS-BSI) sensor, integrated in a vacuum environment, for soft X-ray experiments at synchrotron sources. The 4 Mpixel sensor reaches a frame rate of up to 48 frames s-1 while matching the requirements for X-ray experiments in terms of high-intensity linearity (>98%), good spatial homogeneity (<1%), high charge capacity (up to 80 ke-), and low readout noise (down to 2 e- r.m.s.) and dark current (3 e- per second per pixel). Performance evaluations in the soft X-ray range have been carried out at the METROLOGIE beamline of the SOLEIL synchrotron. The quantum efficiency, spatial resolution (24 line-pairs mm-1), energy resolution (<100 eV) and radiation damage versus the X-ray dose (<600 Gy) have been measured in the energy range from 40 to 2000 eV. In order to illustrate the capabilities of this new sCMOS-BSI sensor, several experiments have been performed at the SEXTANTS and HERMES soft X-ray beamlines of the SOLEIL synchrotron: acquisition of a coherent diffraction pattern from a pinhole at 186 eV, a scattering experiment from a nanostructured Co/Cu multilayer at 767 eV and ptychographic imaging in transmission at 706 eV.

11.
Adv Mater ; 32(39): e2003003, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-32812294

RESUMEN

The emergence of magnetic skyrmions, topological spin textures, has aroused tremendous interest in studying the rich physics related to their topology. While skyrmions promise high-density and energy-efficient magnetic memory devices for information technology, the manifestation of their nontrivial topology through single skyrmions and ordered and disordered skyrmion lattices could also give rise to many fascinating physical phenomena, such as chiral magnon and skyrmion glass states. Therefore, generating skyrmions at designated locations on a large scale, while controlling the skyrmion patterns, is the key to advancing topological magnetism. Here, a new, yet general, approach to the "printing" of skyrmions with zero-field stability in arbitrary patterns on a massive scale in exchange-biased magnetic multilayers is presented. By exploiting the fact that the antiferromagnetic order can be reconfigured by local thermal excitations, a focused electron beam with a graphic pattern generator to "print" skyrmions is used, which is referred to as skyrmion lithography. This work provides a route to design arbitrary skyrmion patterns, thereby establishing the foundation for further exploration of topological magnetism.

12.
Nano Lett ; 20(2): 1428-1432, 2020 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-31928021

RESUMEN

Magnetic skyrmions are two-dimensional magnetization swirls that stack in the form of tubes in the third dimension and which are proposed as prospective information carriers for nonvolatile memory devices due to their unique topological properties. From resonant elastic X-ray scattering measurements on Cu2OSeO3 with an in-plane magnetic field, we find that a state of perpendicularly ordered skyrmions forms, in stark contrast to the well-studied bulk state. The surface state is stable over a wide temperature range, unlike the bulk state in out-of-plane fields which is confined to a narrow region of the temperature-field phase diagram. In contrast to ordinary skyrmions found in the bulk, the surface state skyrmions result from the presence of magnetic interactions unique to the surface which stabilize them against external perturbations. The surface guiding makes the robust state particular interesting for racetracklike devices, ultimately allowing for much higher storage densities due to the smaller lateral footprint of the perpendicular skyrmions.

13.
J Chem Phys ; 151(7): 074701, 2019 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-31438696

RESUMEN

N 1s Resonant Inelastic X-ray Scattering (RIXS) was used to probe the molecular electronic structure of the ruthenium photosensitizer complex cis-bis(isothiocyanato) bis(2,2'-bipyridyl-4,4'-dicarboxylato) ruthenium(II), known as "N3." In order to interpret these data, crystalline powder samples of the bipyridine-dicarboxylic acid ligand ("bi-isonicotinic acid") and the single ring analog "isonicotinic acid" were studied separately using the same method. Clear evidence for intermolecular hydrogen bonding is observed for each of these crystalline powders, along with clear vibronic coupling features. For bi-isonicotinic acid, these results are compared to those of a physisorbed multilayer, where no hydrogen bonding is observed. The RIXS of the "N3" dye, again prepared as a bulk powder sample, is interpreted in terms of the orbital contributions of the bi-isonicotinic acid and thiocyanate ligands by considering the two different nitrogen species. This allows direct comparison with the isolated ligand molecules where we highlight the impact of the central Ru atom on the electronic structure of the ligand. Further interpretation is provided through complementary resonant photoemission spectroscopy and density functional theory calculations. This combination of techniques allows us to confirm the localization and relative coupling of the frontier orbitals and associated vibrational losses.

14.
Sci Adv ; 4(7): eaat0415, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-30035224

RESUMEN

Noncollinear spin textures in ferromagnetic ultrathin films are currently the subject of renewed interest since the discovery of the interfacial Dzyaloshinskii-Moriya interaction (DMI). This antisymmetric exchange interaction selects a given chirality for the spin textures and allows stabilizing configurations with nontrivial topology including chiral domain walls (DWs) and magnetic skyrmions. Moreover, it has many crucial consequences on the dynamical properties of these topological structures. In recent years, the study of noncollinear spin textures has been extended from single ultrathin layers to magnetic multilayers with broken inversion symmetry. This extension of the structures in the vertical dimension allows room temperature stability and very efficient current-induced motion for both Néel DWs and skyrmions. We show how, in these multilayered systems, the interlayer interactions can actually lead to hybrid chiral magnetization arrangements. The described thickness-dependent reorientation of DWs is experimentally confirmed by studying demagnetized multilayers through circular dichroism in x-ray resonant magnetic scattering. We also demonstrate a simple yet reliable method for determining the magnitude of the DMI from static domain measurements even in the presence of these hybrid chiral structures by taking into account the actual profile of the DWs. The existence of these novel hybrid chiral textures has far-reaching implications on how to stabilize and manipulate DWs, as well as skymionic structures in magnetic multilayers.

15.
J Chem Phys ; 148(20): 204705, 2018 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-29865819

RESUMEN

Two-dimensional resonant inelastic x-ray scattering (RIXS) and resonant photoelectron spectroscopy (RPES) maps are presented for multilayer and monolayer coverages of an aromatic molecule (bi-isonicotinic acid) on the rutile TiO2(110) single crystal surface. The data reveal ultra-fast intramolecular vibronic coupling upon core excitation from the N 1s orbital into the lowest unoccupied molecular orbital (LUMO) derived resonance. In the RIXS measurements, this results in the splitting of the participator decay channel into a purely elastic line which disperses linearly with excitation energy and a vibronic coupling channel at constant emission energy. In the RPES measurements, the vibronic coupling results in a linear shift in binding energy of the participator channel as the excitation is tuned over the LUMO-derived resonance. Localisation of the vibrations on the molecule on the femtosecond time scale results in predominantly inelastic scattering from the core-excited state in both the physisorbed multilayer and the chemisorbed monolayer.

16.
Phys Rev Lett ; 120(3): 037202, 2018 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-29400492

RESUMEN

Chirality in condensed matter has recently become a topic of the utmost importance because of its significant role in the understanding and mastering of a large variety of new fundamental physical mechanisms. Versatile experimental approaches, capable to reveal easily the exact winding of order parameters, are therefore essential. Here we report x-ray resonant magnetic scattering as a straightforward tool to reveal directly the properties of chiral magnetic systems. We show that it can straightforwardly and unambiguously determine the main characteristics of chiral magnetic distributions: i.e., its chiral nature, the quantitative winding sense (clockwise or counterclockwise), and its type, i.e., Néel [cycloidal] or Bloch [helical]. This method is model independent, does not require a priori knowledge of the magnetic parameters, and can be applied to any system with magnetic domains ranging from a few nanometers (wavelength limited) to several microns. By using prototypical multilayers with tailored magnetic chiralities driven by spin-orbit-related effects at Co|Pt interfaces, we illustrate the strength of this method.

17.
J Chem Phys ; 147(13): 134705, 2017 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-28987114

RESUMEN

We present for the first time two-dimensional resonant inelastic x-ray scattering (RIXS) maps of multilayer and monolayer bi-isonicotinic acid adsorbed on the rutile TiO2(110) single crystal surface. This enables the elastic channel to be followed over the lowest unoccupied molecular orbitals resonantly excited at the N 1s absorption edge. The data also reveal ultra-fast intramolecular vibronic coupling, particularly during excitation into the lowest unoccupied molecular orbital-derived resonance. Both elastic scattering and the vibronic coupling loss features are expected to contain the channel in which the originally excited electron is directly involved in the core-hole decay process. This allows RIXS data for a molecule coupled to a wide bandgap semiconductor to be considered in the same way as the core-hole clock implementation of resonant photoemission spectroscopy (RPES). However, contrary to RPES measurements, we find no evidence for the depletion of the participator channel under the conditions of ultra-fast charge transfer from the molecule to the substrate densities of states, on the time scale of the core-hole lifetime. These results suggest that the radiative core-hole decay processes in RIXS are not significantly modified by charge transfer on the femtosecond time scale in this system.

18.
Sci Rep ; 7(1): 7253, 2017 08 03.
Artículo en Inglés | MEDLINE | ID: mdl-28775262

RESUMEN

The advent of x-ray free electron lasers has extended the unique capabilities of resonant x-ray spectroscopy techniques to ultrafast time scales. Here, we report on a novel experimental method that allows retrieving with a single x-ray pulse the time evolution of an ultrafast process, not only at a few discrete time delays, but continuously over an extended time window. We used a single x-ray pulse to resolve the laser-induced ultrafast demagnetisation dynamics in a thin cobalt film over a time window of about 1.6 ps with an excellent signal to noise ratio. From one representative single shot measurement we extract a spin relaxation time of (130 ± 30) fs with an average value, based on 193 single shot events of (113 ± 20) fs. These results are limited by the achieved experimental time resolution of 120 fs, and both values are in excellent agreement with previous results and theoretical modelling. More generally, this new experimental approach to ultrafast x-ray spectroscopy paves the way to the study of non-repetitive processes that cannot be investigated using traditional repetitive pump-probe schemes.

19.
J Synchrotron Radiat ; 24(Pt 4): 886-897, 2017 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-28664896

RESUMEN

The SOLEIL synchrotron radiation source is regularly operated in special filling modes dedicated to pump-probe experiments. Among others, the low-α mode operation is characterized by shorter pulse duration and represents the natural bridge between 50 ps synchrotron pulses and femtosecond experiments. Here, the capabilities in low-α mode of the experimental set-ups developed at the TEMPO beamline to perform pump-probe experiments with soft X-rays based on photoelectron or photon detection are presented. A 282 kHz repetition-rate femtosecond laser is synchronized with the synchrotron radiation time structure to induce fast electronic and/or magnetic excitations. Detection is performed using a two-dimensional space resolution plus time resolution detector based on microchannel plates equipped with a delay line. Results of time-resolved photoelectron spectroscopy, circular dichroism and magnetic scattering experiments are reported, and their respective advantages and limitations in the framework of high-time-resolution pump-probe experiments compared and discussed.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...